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Monitoring and Modeling Environmental 
Change in Protected Areas: Integration 
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Remote Sensing*
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21.1 Introduction

Humans have created protected areas (PAs) over the past millennia for a 
 multitude of reasons. The establishment of Yellowstone National Park in 1872 
by  the United States Congress ushered in the modern era of governmental 
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protection of natural areas that catalyzed a global movement (IUCN, 2008; 
Heinen, 2007). Today, approximately 13% of terrestrial and 1% of marine 
environments are designated as protected and a tremendous variety of mon-
itoring programs and conservation planning efforts are underway (e.g., 
UNEP the United Nations Environment Programme http://www.unep.org/; 
see also http://www.wdpa.org/). Despite these conservation achievements, 
species’ population declines, biodiversity loss, extinctions, system degrada-
tion, pathogen spread, and state change events are occurring at unprece-
dented rates (Hoffmann et  al., 2010; Pereira et  al., 2010). These effects are 
augmented by continued changes in land-use, alongside the direct, indirect, 
and interactive effects of climate change and disruption. It is clear that des-
ignation and monitoring of PAs are necessary but insuf#cient in providing 
the needed levels of support to effectively maintain the attributes of ecosys-
tem function and species preservation into the inde#nite future (Sinclair 
et al., 1995).

Monitoring, when coupled with modeling, can provide a powerful basis for 
guiding management actions, while simultaneously advancing science 
through hypothesis testing and predictions. Modeling of ecosystem indica-
tors informed by monitoring information such as that provided from remote 
sensing (RS) is essential for ef#cient, transparent, repeatable, and defensible 
decision-making in ecological systems. These decisions should include out-
comes-based activities driving toward goals such as population recovery, 
critical habitat restoration, biodiversity increase, and improved ecosystem 
services. Models—whether narrative, conceptual, visual, ecological, or sta-
tistical—provide a common language for scientists and practitioners, per-
mitting hypothesis testing about the mechanisms or drivers underlying the 
observed variation in data. Of particular importance is the idea that statisti-
cal models can be improved by careful attention to ecological concepts and 
mechanisms (Austin, 2002) with the goal of clarifying the “sometimes tenu-
ous link between observed pattern and signi#cant ecological process” (Gross 
et al., 2009).

Many PAs are centered on an explicit or implicit valuation of the species 
they support, and many monitoring and management programs are focused 
on species persistence, as both an ecological goal and as part of a set of legis-
lated mandates. In this context, long-term species data sets are of unique 
value because they provide insight into the mechanisms that support the 
desired attributes of the PA systems. What would be the value of Yellowstone 
National Park without its iconic charismatic megafauna? Leaving the dif#-
culties of shifting baselines aside (Baum and Myers, 2004), the intrinsic value 
of PAs is in part set by the unique and rare species and processes they encom-
pass. For these reasons, we focus in this chapter on the role of long-term, 
legacy species data sets (“focal species” in the parlance of the U.S. Fish and 
Wildlife Service, hereafter FWS). What is their monitoring value, in a PA set-
ting, in helping to elucidate the metrics of resilient, intact, and sustainable 
ecosystems? What are their limitations?
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Practitioners such as agency biologists and managers commonly fund and 
conduct monitoring programs, while scientists seek access to the data that 
have been collected. This provides a common ground for collaboration and 
bridging of the gap between scientists and practitioners (Marris, 2007). 
Science and decision making should go hand in hand, because they both 
measure success by their ability to predict the consequences of actions 
(Pielke, 2003). Although monitoring of focal species, as well as other ecologi-
cal indicators or vital signs, are the critical #rst steps needed for science-
based decisions, it is often treated as an end unto itself. How do we explain 
their variation across space and over time? To what is it attributable? What 
are the anticipated long- and short-term outcomes from our management 
activities? At its best, ecological modeling provides answers to these ques-
tions by (1) exploratory and synthetic analysis of possible causes using 
explanatory variables, (2) investigating possible causes while testing hypoth-
eses (diagnostic models), and (3) predicting consequences, for example, 
under future scenarios (prognostic models). Models serve the essential func-
tion of connecting cause and effect in otherwise intractably complex natural 
systems (Paola, 2011).

Arguably, ecological models are as powerful as the quality and relevance 
of the causal and explanatory variables (“covariates”) included. In a sense, 
lack of explanatory covariates in predictive modeling is equivalent to con-
ducting science without alternate hypotheses. Ecosystem indicators, whether 
process-based (e.g., productivity), pattern-based (e.g., land-use activities), or 
component-based (species populations) vary in space and time, yet a major 
limiting factor in comprehensive ecological models is lack of explanatory 
geospatial data. Although these geospatial data may exist, impediments to 
access by ecologists in PA contexts may include issues as varied as data for-
mats, technical barriers to data integration (e.g., CPU time), validation issues, 
documentation issues, uniform standards and protocols accompanying RS 
data, increasing specialization of disciplines, cost, lack of requisite technical 
expertise, and time for dealing with all of the above complexities. These 
issues conspire against the ready, standardized integration of RS into eco-
logical research for PA management.

Nonetheless, RS science is a universal tool for managers and researchers 
across many domains (Kennedy et al., 2009). The lack of standardized proto-
cols, work"ow architecture, guidelines, training, and software tools has led 
us into a baf"ing jungle of complexity. Our goal in this chapter is to take 
steps toward standardized yet "exible work"ow architecture alongside a set 
of decision support (software) tools that can be modi#ed as needed, all for 
integration of RS data into ecological applications for PA systems, in order to 
support an enhanced role for science at the decision-making table. In this 
chapter, we propose that RS data/data products coupled with user-friendly 
data exploration, data management, analyses and modeling tools, in an acces-
sible common platform, can assist scientists and practitioners toward a better 
understanding of how environmental impacts affect species populations and 
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the ecosystem services that sustain them. It is our intent to describe a sci-
ence-based approach that makes the most out of existing data (i.e., legacy 
data) from monitoring programs and decision-support systems in and adja-
cent to PAs by analysis and modeling of focal species populations.

21.2 PAs and the Focal Species Concept

Focal species (legacy, sensitive, endangered, or otherwise noteworthy spe-
cies) are often of substantial socioeconomic and ecological importance. Data 
from long-term monitoring programs related to focal species and their habi-
tats (Figure 21.1) have the potential to provide invaluable insight into both 
stable and changing ecosystem function and, if addressed carefully, provide 
insight into cause and consequence of dynamic environmental impacts. 
In order to work with a focal species for monitoring and modeling, variation 
in space and time discloses environmental impacts at landscape scales and 
at both short and long timescales. Building empirically based diagnostic 
models and prognostic models (ecological forecasting) using focal species 
data (time-series, legacy data sets) and making use of the concept of bench-
mark ecosystems (see Section 21.4) may be the best approach to craft 
 successful adaptation strategies that protect biodiversity and ecosystem 
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FIGURE 21.1
Schematic representation of the process of matching (1) #xed and (2) temporally dynamic geo-
spatial covariates with spatio-temporal response data from legacy data sets to create a merged 
data array (MDA) for analysis and modeling in EAGLES (Ecosystem Assessment, Geospatial 
Analysis and Landscape Evaluation).
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 services for human value and those of nature in its own right and intrinsic 
value (Wiens, 2007).

Any number of species, vital rates, vital signs, or ecosystem indicators 
could have been chosen for our monitoring and modeling approach, for 
example, using annual NPP (net primary production) as in Crabtree et al. 
(2009). Here, we focus on species populations (legacy data) as ecosystem 
indicators to understand complex environmental impacts for three major 
reasons. First, “species” constitute the longest standing indicator within the 
ecological/wildlife/biological management professions. For example, the 
55-year waterfowl monitoring program (Figure 21.1, for mallards) is believed 
to be the most extensive, comprehensive, long-term wildlife survey effort in 
the world. The concept of species as indicators, keystones, and umbrellas has 
been a dominant theme in ecology and conservation worldwide (Landres 
et al., 1988; Mills and Soule, 1993) and is still the focus of land management 
agencies in the United States (e.g., FWS). Second, and most importantly, the 
legacy of species as ecosystem indicators has created long-term, time-series 
data sets. These legacy data serve as continuously running experimental 
units responding to both natural and policy experiments. Because conduct-
ing randomized, replicated experiments at ecosystem and regional scales is 
rarely feasible, we can use these “quasi-experimental” approaches to study 
impacts on ecosystem structure and function (Hargrove and Pickering, 
1992). Analysis of variability in legacy data sets may be our best means to 
understand the complex interactions of climate disruption with existing 
environmental impacts such as changing land-use and invasive spread. With 
modeling, we can detangle multicausal impacts and build the foundation of 
predictive models (ecological forecasting). These data have the potential to 
explain response to climate (multidecadal) and thus allow us to craft adapta-
tion strategies to climate, both direct and indirect (e.g., disturbance), and 
their interaction with land-use activities.

The third reason for using focal species as indictors of ecosystem impacts 
is due to their link to human management systems and their socioeconomic 
importance. Focal species are often protected and managed by state and fed-
eral agencies and can bridge gaps between science and practitioners (biolo-
gists, conservationists, managers) on-the-ground (Anonymous, 2007). This 
becomes the key charge of those concerned with successful, long-term, adap-
tive management strategies for PAs—many of which are undergoing rapid 
environmental changes.

Figure 21.2 presents the essential function of our approach: matching vari-
ation in species legacy data to covariates (candidate hypotheses) across space 
and time to create a candidate model. Ideally, legacy data can be modeled 
with known, suspected, and causal spatially explicit and time-varying 
covariates. However, dif#culties in obtaining the needed geospatial covari-
ates to explain observed variation in response remain a prominent challenge 
for scientists and decision-makers. Forward-looking models (scenarios, fore-
casts, prognostic models, or projections) present even greater challenges due 
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to lack of stationarity, threshold phenomenon, interaction effects, and dis-
continuities. We submit that RS data, data products, and output from models 
that assimilate RS data constitute our best chance at creating the needed 
covariates required to construct accurate and realistic models of species pop-
ulations that can be generalized across ecosystems.

21.3  Remote Sensing: Data Integration for Monitoring 
and Modeling

On-the-ground monitoring of PA ecosystems is expensive primarily due to 
the size and logistical constraints of national parks, designated wilderness, 
wildlife refuges, and other large PA ecosystems. However, recent advances 
in technology—primarily RS—provide new avenues for monitoring and 
modeling of large PA ecosystems at multiple spatial and temporal scales. 
Unlike traditional #eld plots and surveys, RS provides wall-to-wall coverage 
of geospatial products at unprecedented scales across landscapes, ecosys-
tems, ecoregions, and the globe, revealing continuous empirical patterns of 
environmental variables in space and time. These patterns are crucial to 
uncovering cause and consequence in analyses and modeling of a wide 
 variety of ecosystem indicators and vital signs. Of course, this view requires 
a  belief that these observed patterns indicate a comprehensible system of 
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FIGURE 21.2
Legacy data on focal species populations are regularly collected by state and federal agency 
monitoring programs. Explaining their variation across space and time requires models that 
include geospatial explanatory variables that change over time. A multitude of these spatio-
temporal variables have been recently provided by recent advances in RS technologies. Elk 
(Cervus elaphus) data are derived from winter aerial surveys across Yellowstone National Park’s 
northern winter range. Mallard (Anas platyrhynchos) data are from the joint FWS/Canadian 
Wildlife Service annual aerial survey of breeding waterfowl.
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control underlying the material under observation, and that these controls 
may be disclosed by rule-based (e.g., logic-based) approaches.

In the past, RS data seldom provided the information needed to ful#ll the 
requirements (e.g., accuracy, scale) for the speci#c objectives of an investiga-
tion. Today, integration of data from multiple sources allows creation of pre-
viously unavailable geospatial data for monitoring and modeling. Remote 
sensors on satellites, airborne platforms, and a wide variety of ground-based 
instruments such as weather stations, sensor networks, and wildlife GPS col-
lars are producing rich streams of environmental data about ecosystems and 
the species that inhabit them. Even satellite data can now be readily acquired 
at varying spatial (1 m to 1 km) and temporal (daily to annual) resolutions 
globally to track many environmental impacts such as land use, disturbance, 
and climate change. For example, recent deployment of MODIS (Moderate 
Resolution Imaging Spectroradiometer, http://modis.gsfc.nasa.gov/) sensors 
have systematically generated multiple ecological indicators available at 
many resolutions across the entire globe at no or low cost (Justice et al., 1998).

Based on the existing literature of optimal trade-space between spectral, 
spatial, and temporal resolutions, RS data can provide direct and accurate 
measurement of important environmental variables with both single and 
multiple sensors (i.e., fusion). And when direct and/or accurate measurement 
is not feasible, data integration and data assimilation models can provide 
direct, relative or by-proxy measurement of previously unavailable parame-
ters of interest that can be validated. The TOPS (Terrestrial Observation and 
Prediction System) program (Nemani et al., 2009), for example, is a data inte-
gration system that uses data from multiple sources (airborne, spaceborne, 
and ground-based) to produce continuous, gridded variables for monitoring 
and modeling (see Nemani et al., this volume). Concurrent with this expo-
nential growth of geospatial information is the parallel development of 
 statistical and mathematical techniques, as well as the CPU (computer 
 muscle) capacity to handle these enormous analytical tasks. It is now feasible 
to create analyses of multiple responses to multiple factors at even global 
scales (see Zhao and Running, 2010).

21.4 PAs and the Concept of Benchmark Ecosystems

Following the concept of a benchmark (“a standard for evaluation or mea-
surement, a standard of reference”), we propose the concept of a benchmark 
ecosystem. A benchmark ecosystem is one in which all entities (species, biotic 
components, abiotic/geophysical components, hydrological processes, and other eco-
logical processes, e.g., migration and predation) function within an integrated 
and potentially self-sustaining unit. Given the encroachment of threats on 
even the most remote ecological systems, the idea of a benchmark system 
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represents an idealization. Yet even as an abstraction, the construct serves a 
heuristic and pragmatic role, forming the basis for evaluation and compari-
son (e.g., with other systems under restoration). In an era dominated by shift-
ing ecological baselines, the benchmark ecosystem concept provides a set of 
reference standards for restoration, conservation, and related management 
activities. Without a speci#ed suite of standards, of metrics, the entities and 
components of PAs will be increasingly vulnerable to the systemic degrada-
tion characteristic of expedience, as well as economic and societal pressures. 
The benchmark state is to some degree embodied in all PAs, and as such, 
justi#es their creation, perpetuation, and legitimacy. An analogy, from 
human epidemiology, is the “well-normal” set of criteria for system values. 
Just as human physiological parameters fall within a de#ned speci#ed a 
 priori range of values for a healthy human body system, so too can the 
 well-normal ranges of ecological systems be speci#ed (“bench-marked”). 
Precedents already exist for many ecological parameters, such as minimum 
viable population standards for breeding vertebrate populations, and air 
and water quality standards. We are still short on the overall metrics confer-
ring resilience and stability for the long term.

Benchmark ecosystems can then be used (1) to derive the well-normal 
attributes of a functioning ecosystem, (2) as a reference standard for restora-
tion efforts, and (3) to provide an empirical testing ground for ecological 
research into the mechanisms driving sustainable systems and the focal 
 species they contain. The relationship of this concept to PAs becomes one 
of quantitative and qualitative measurement and justi#cation of the validity 
of the protection and restoration/conservation efforts. Is the wildlife refuge 
large enough to sustain its population and the processes that sustain them, 
such as staging for migration? As research moves forward hand-in-hand 
with management activities, the outcomes from proposed and forecast activ-
ities can be validated or rejected on the basis of the benchmarked goals in a 
quasi-experimental PA setting (Hargrove and Pickering, 1992).

The concept of a benchmark system can help bridge the gap between sci-
enti#c measurement and actionable management goals, by #nding the com-
mon agreement on outcomes-driven, prespeci#ed activities. For example, the 
ecological process of herbivory (amenable to time-series analysis of RS mea-
surement), is well-characterized in a functioning ecosystem, with published 
values for production, offtake, and patterns of occupancy by species of inter-
est. The absence of this process then, is demonstrable as the process of spe-
cies depletion occurs, and the restoration of this absent, yet well-characterized 
process, can be set as a speci#ed goal. General reluctance among ecologists 
and managers to set hard targets for the maintenance, in perpetuity, of spe-
cies and habitats, may be overcome by acceptance of standardized metrics of 
ecological function based on empirical standards.

In this intentional design, standardized RS data and data products serve 
an absolutely critical role. Given the current incompleteness of our ability to 
characterize, in a deterministic manner, those system attributes required for 
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effective preservation, our best hope may be to attempt functional RS repre-
sentations, which characterize, with appropriate resolution, and temporal 
repeat rates, then to store these characterizations as attribute sets of PAs. The 
novel application of dynamic attribute mapping as benchmark metrics is per-
haps the most interesting application of RS in PA ecosystems in need of 
adaptive management and research strategies into our uncertain future.

As ecological insight improves, as we begin to understand the mecha-
nisms driving the components that PAs were originally intended to preserve. 
As this characterization improves, we will be able to more formally set 
value ranges for functioning and sustainable ecosystem components, and, by 
extension, apply those to the restoration of other systems. These challenges 
are directly related to those metrics needed in the developing theory of long-
term system health and resilience (Holling, 1973).

As PA monitoring techniques become increasingly powerful, standardiz-
ing the metrics of management outcomes in a systems framework becomes 
an increasingly important objective. PAs exist because they embody ideals of 
content and condition such as the charismatic panda bear (Ailuropoda melano-
leuca), the historic legacy of bison (Bison bison), and ecological processes like 
migration and natural disturbance regimes that humans decide to perpetu-
ate. PAs are created, set aside, and managed with the implicit justi#cation of 
maintaining speci#c components and functions whose presence originally 
caused the PA set-aside in the #rst place, with recognition of their intrinsic 
worth. Yet managers and scientists still lack clear standards of how to mea-
sure success.

In a sense, then, benchmark ecosystems, the best of the remaining PAs 
globally, offer researchers a “Rosetta Stone” for decoding system attributes 
which we will need to actively protect, even as we struggle with a still foggy 
comprehension of what constitutes an intact ecosystem, we can decode the 
architecture of attributes of those systems, in order to accomplish the man-
dates of the Endangered Species Act, as well as the more profound ethical 
obligations that underlie that Act.

21.5  Augmenting Decision Support Systems: Workflow 
Architecture and Tools as Unifying Elements

Recent efforts within the US Department of Interior (DOI) provide a case-
study opportunity to narrow the gap between research and applications, by 
bridge building from the side of practitioners. Recently, the National Park 
Service (NPS) began a nationwide Inventory and Monitoring program (Fancy 
et al., 2009). The FWS has begun a similar Inventory and Monitoring Program 
for the national Refuge system. At the same time, the FWS and its federal 
partner, the U.S. Geological Survey (USGS) formed a National Ecological 
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Assessment Team to reevaluate how the FWS makes trust resource manage-
ment decisions, encompassing #sh, wildlife, and plants as well as the habi-
tats necessary to sustain them. The team developed a Strategic Habitat 
Conservation (SHC) framework (NEAT, 2006; http://www.fws.gov/science/
doc/SHCTechnicalHandbook.pdf ), which was adopted formally in October 
2006. This framework became the conceptual basis for the creation of 
Landscape Conservation Cooperatives or LCC program (http://www.fws.
gov/science/shc/lcc.html) and is intended to provide funding to enact the 
SHC through partnerships that link science and conservation delivery. The 
LCC effort is being led by the FWS, an agency with a long and profound his-
tory of PA management and conservation of biodiversity. The FWS, whose 
responsibilities include protecting threatened and endangered species, 
maintaining migratory wildlife populations, and managing national wild-
life refuges, has an urgent need to understand how environmental change 
affects species populations as well as the habitats and ecological functions 
that support them. In order to achieve these goals, an integrated systems 
approach or architecture of methods and tools will be required. It must be 
both consistent enough to be reproducible and defensible, and "exible 
enough to operate in a variety of contexts. From a modeling standpoint, the 
ability to census the attributes at landscape to regional scales, through the 
use of RS technologies, confers that single most necessary tool in unraveling 
cause and consequence.

21.6  EAGLES: Workflow Architecture and Tools for 
Scientists and Practitioners

Below, we describe an initial series of linked Decision Support Tools (DSTs) 
organized as an adaptable, unifying work"ow architecture, collectively 
referred to as EAGLES (Ecosystem Assessment, Geospatial analysis, and 
Landscape Evaluation System). The goal of EAGLES is to lower the barrier 
of entry to allow scientists and practitioners the ability to understand the 
cause and consequence of environmental change using focal species (legacy) 
data as key ecosystem indicators. It stresses the use of common data sources 
(e.g., standardized libraries of RS data products), standardized protocols, 
and a set of transparent, robust, defensible analysis techniques across 
 jurisdictional and ecological boundaries to provide site-speci#c, actionable 
outcomes.

Because species legacy data sets vary with regard to management objec-
tives, spatial and temporal extent, data drop-out in space and time and sam-
pling design, we focused the development of EAGLES to be "exible and 
user-friendly. We understand the tension between a work"ow that is general 
enough to be applicable across a broad array of data types, yet speci#c 
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enough to be useful, and emphasize the need for clear set of approaches, 
providing a road map for practitioners arriving at management decisions 
that are well-supported by science and common data standards. Thus, 
EAGLES is a prototype framework for modeling, using a variety of tools for 
integrating species legacy data (response) and geospatial covariates (explan-
atory variables), in a variety of forms, within a standardized and document-
able work"ow for decision-making.

EAGLES was developed through grants awarded from NASA (Ecological 
Forecasting Program—Award no. NNX08AO58G) and the FWS to the authors 
in order to enhance existing agency DSSs, in this case the SHC and subse-
quent LCC program within the Department of Interior (DOI). The project’s 
overriding goal was to integrate RS data into species habitat and demogra-
phy models. Its three main objectives follow the three sequential segments of 
the EAGLES acronym: (1) assess the ecological conditions of focal region or 
ecosystem where climate and other related environmental drivers are having 
signi#cant impacts, (2) conduct geospatial analysis of focal species populations 
responding to these impacts, and (3) use these statistical (diagnostic) models 
to create forecasts (prognostic models) of land cover change and future cli-
mate, hence, landscape evaluations.

EAGLES’s linked software tools (Table 21.2) operate in a user-friendly soft-
ware environment, allowing user control of data processing, analysis, and 
predictive modeling capabilities. The work "ow components of EAGLES 
within a generic DSS are presented in Figure 21.3. End-users access tools 
through multiple pathways of data processing, beginning with matching 
species data sets with RS data/data products (data products include modeled 
products such as forage quality). The end-to-end nature of the work "ow—
from data input to visualization, analysis and forecasting of species popula-
tions—is intended to provide a platform for "exible yet repeatable analytical 
pathways. For the remainder of this chapter, we highlight the major process-
ing components and tools within the EAGLES architecture (Figure 21.3) and 
provide focal species and covariate examples from the legacy data sets 
accessed through our partnership with FWS and from NASA data/data prod-
ucts. We also provide some general guidelines to covariate selection criteria.

EAGLES tools were designed for a personal computer (PC) platform, 
including accessing and sharing large data sets on the internet to support a 
community of users involved in advanced data acquisition, management 
and manipulations, exploration, data integration, data mining, analysis and 
modeling, visualization, and other computing and information processing 
services. The ArcGIS (ESRI, 2009) software interface is chosen because this is 
the most widely employed and available platform across city, county, state, 
federal, and international levels. The Data Exploration Toolset (DET) and 
models were developed primarily in the open-source, statistical software 
“R” (R Development Core Team, 2009) by Zuur et  al. (2010), subsequently 
translated into ArcGIS user interface, to lower the barrier for end-users (spe-
ci#cally the steep learning curve for command line interface). Both R and 
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ArcGIS are in widespread use among government, NGOs, and in the private 
sector. The documented underlying code arrays are available to the expert 
user community, which may include ecological statisticians, academics, and 
scientists interested in continuing code development.

21.6.1 Outside and Inside EAGLES

We also designed EAGLES with the explicit intent of augmenting existing 
agency and organizational DSSs. Because EAGLES provides a variety of 
tools (Table 21.1) for decision-makers it is not a DSS, but is rather a framework 
populated with DSTs to enhance existing DSS structures. Thus, columns 1 
and 4 in Figure 21.3 exist outside EAGLES but are essential activities in order 
to achieve decision-making. They depict how practitioners might interact 
with EAGLES given a species legacy data set. At the outset, a speci#c set of 
questions need to be de#ned in order to extract necessary information from 
a legacy data set that leads to a science-based management action. As is the 
goal of any science application, outcomes-driven questions must initiate 
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FIGURE 21.3
The EAGLES (Ecosystem Assessment, Geospatial analysis, and Landscape Evalution System) 
work"ow schematic diagram. EAGLES is a work"ow architecture that includes both tools 
(software based) and work"ow to allow modeling of species legacy data sets to address man-
agement and conservation decision making. It is "exible and provides multiple work"ow path-
ways based on the speci#cs of the species response data and management question(s). The 
general idea is to provide a systematic yet "exible architecture for integration of species data 
with geospatial covariates, most of which are derived from NASA data, data products, and 
ecosystem models that assimilate sensor data. As the degree of complexity in statistical analy-
ses and RS data increases, the need for a set of standardized techniques and common data 
protocols becomes more essential, if we are to support repeatable, transparent methods for 
ecological modeling.
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from the decision-makers. They will eventually interpret the results of model 
analyses before proceeding to site-level actions (column 4, Figure 21.3). 
Thus, EAGLES provides the intermediate decision support tools needed in 
an iterative process starting with the management or decision concern and 
ending with site-level action (e.g., habitat restoration, harvest levels, land-use 
activities).

21.6.2 EAGLES Workflow

We envision that experts/managers convene either informally or formally, 
using for example, new Structured Decision Making (Lyons et al., 2008) pro-
cedures in order to develop a basic understanding of the factors affecting 
their focal species and/or its habitat. Species recovery plans serve as excel-
lent examples of extant information that can form the basis for a priori model 
structures. Another important objective of this process is to develop the 
required set of covariates. After a list of candidate covariates is assembled, 
the user will be able to integrate these into the modeled structure. Given the 
ideal situation, EAGLES end-users will also be faced with two data input and 
integration tasks: (1) bias correction and data drop-out issues in the legacy 
response data (which is beyond the scope of this chapter), and (2) accessing 
the needed covariates and matching them to the response data.

TABLE 21.1

List of EAGLES Tools

Tool Platform Code Readiness

Remote Sensing (RS) data WIKI 
http://geospatialdatawiki.wikidot.
com/

Internet Web application Online

www.ClimateScape.net Internet Web application Online
Data integration and assimilation 
models for covariates (CASA, TOPS, 
NCEP, etc.); there are many that will 
be listed in RS WIKI

Various Application speci#c Beta

Remote Sensing Classi#cation 
techniques, for example, percent 
surface water from MODIS

Various In publications Beta

COASTER: data extraction, 
visualization (www.COASTERdata.
net)

Internet C# Online 
(beta)

Data Exploration Tools (DET) ArcMap R w/in Arc interface Beta
Animal-habitat Models (RSPF) ArcMap R w/in Arc interface Beta
GLM, MHRA, others for animal habitat ArcMap R w/documentation Prototype
SWAP tool nonclimate scenarios ArcMap Various Prototype
FcModelBuilder for Future Climate 
scenarios

Various Python Beta
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21.6.3 Covariate Selection Criteria

With rapid technological advances, another gap is being created between 
method and underlying theory. As RS technologies accelerate delivering 
new data products, the underlying theory of covariate selection is still catch-
ing up. Ecologists are waiting for theoretical and statistical frameworks that 
can help guide the complex and rapidly expanding world of RS data and 
RS-modeled products. Indeed, covariate selection for ecological modeling is 
both an art and a science (Weins, 2002). Little guidance exists for ecologists 
charged with building diagnostic and prognostic models for focal species 
populations that requires a cadre of needed covariates that may or may not 
vary adequately in space and time.

In an ideal world, the covariates should re"ect a minimum and suf#cient 
set of known factors that affect species response. Whether the statistical 
 theory underlying the modeling effort relies on information-theoretic appro-
aches and a priori model selection, or involves other approaches, we are after 
a clear-minded, interpretable approach to understanding cause and effect—
regardless of the RS inputs, PA status, and inferential techniques. In our 
view, building an ecological model with RS data and data products may be 
greatly facilitated by access to standardized, documented, accessible, and 
cost-controlled geospatial layers (see Reichmann et al., 2011 for a more for-
mal exposition of these structures and their importance). As a modest begin-
ning, we have started this process by building a variety of web-based tools 
to access these data sources (rows 1–3, Table 21.1) (see GeoSpatial data wiki at 
http://geospatialdatawiki.wikidot.com/, which lists RS data for ecological 
applications).

All ecological models are to some extent incomplete, and this incompleteness 
can sometimes be characterized by overall goodness-of-#t, expert knowledge, 
visually plotting the predictions on the landscape, hypothesis testing, and 
most importantly, independent validation. A de!cient model, however, is one 
that proceeds without inclusion of known and expected causal covariates, or at 
least, interpretable proxies of these covariates. And this violation of scienti#c 
principle is in addition to the perennial problem of creating the needed covari-
ates when they usually do not exist or are too costly to acquire. Below, we 
provide initial guidelines and suggested solutions to this conundrum as well 
as the overall problem of covariate selection. At this point in a hypothetical 
EAGLES work"ow, we assume we have identi#ed the ideal situation, inde-
pendent of availability or cost, that is, a full list of causal or mechanistic 
covariates based upon the discovery process described above. However, given 
their sensitivity and fundamental role in the scienti#c method, careful con-
sideration must be given to the selection of covariates prior to preliminary 
analysis and #nal modeling. There is surprisingly little attention provided in 
the published literature (but see Scott et al., 2002). Too often we gather what is 
easily available without further consideration of either creating the needed 
covariate or selection of a proxy that is interpretable.
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21.6.3.1 Scale

Issues of scale present fundamental challenges for all ecological data. These 
challenges are further compounded by the interpretation and classi#cation 
of the abstractions of rasters, pixels, and postings. Most spatial ecological 
data are inherently continuous in nature, but we discretize them in space, 
time, and often, level of organization. Scale determination can be made 
based on prior research grounded in empirical biology, and is often deter-
mined by spatio-temporal resolution available in covariate sets as well. Based 
on research, natural history, #eld observation and intuition, scale of covari-
ates can be selected from the perspective of the species of study. When in 
doubt, select several scales and use and then use, for example, metrics like 
log-likelihood values in model selection approaches (Burnham and Anderson, 
2002) to arrive at a one or a reduced set.

Measurement error in the response data should also be used. For example, 
error polygons for radio telemetry locations set the lower limit on analytical 
resolution for species studied with telemetry. It is also important to keep 
in  mind the inherent level of spatial and temporal heterogeneity of the 
covariate of interest, for example, 30 m snow-water-equivalent (SWE) 
 measurements may vary little over a 1 km distance. Continuous observa-
tions are recommended over categorical classi#cations of the same covariate, 
for example, percent cover of sagebrush captures a more meaningful aspect 
of selection criteria for a given species compared to a multinomial category 
that may or may not include sagebrush presence. Finally, selection of tempo-
ral resolution is very challenging. Consider not only scale but “critical 
 windows” or seasonality given the life-history strategy for your species of 
interest. Species response to speci#c events (e.g., previous disturbance) and 
cumulative lags are common, for example, peak phytomass production 
responding to precipitation in both the current spring and previous year 
(Potter et al., 2007).

21.6.3.2 Collinearity

Collinearity can be considered from both biological and statistical points of 
view. Rigorous and clear-minded approaches to data exploration tools (DET) 
and diagnostics before, during, and after the modeling process (e.g., see Zuur 
et al., 2010) give the best outcomes for deconstructing the relevance of col-
linearity metrics in the data under investigations. There are accepted statisti-
cal criteria for collinearity, but ecological insights can be of equal or greater 
importance. This is troublesome because two correlated covariates are often 
ecologically related to one another from the perspective of the species of 
interest. For example, assume prey availability, shrub cover, and southern 
aspects are all signi#cantly correlated and ecologically related covariates. 
Are bobcats, for example, selecting for one, two, or all three? Also, because 
many approaches offer only loose guidelines with respect to collinearity in 
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model selection procedures, we strongly suggest the using our data explora-
tion toolset (DET) which is patterned after Zuur et al. (2010).

21.6.3.3 Proxies and Interpretation

Owing to the cost and/or unavailability of important covariates, we are often 
left with selection of proxy covariates that can be dif#cult to interpret. 
Because proxy covariates exist as abstractions on a gradient ranging from 
gross approximations to speci#c causal agents, caution must be taken when 
interpreting model results. The strong relationship between level of proxy 
and ability to interpret model results, can lead to erroneous conclusions. For 
example, annual plant production may serve as an interpretable proxy for 
herbivores responding to forage biomass but not forage quality. Finally, any 
suspected proxy can be further examined with #eld validation and #eld 
observation efforts. In a sense, a proxy relationship can be thought of as a 
hypothetical relationship, and is therefore one that should be tested and 
validated.

21.7 Final Covariate Selection and Creation

Owing to the information needs of a particular focal species data set, it is 
very likely that some important covariates will have to be created or existing 
proxies interpreted. We provide just four examples (Figure 21.4a–d) of the 
many covariates one might need in order to build predictive models and test 
hypotheses. These examples underscore the vast potential that RS data holds 
in providing covariates, ranging from free or low-cost to high-cost solutions, 
for ecological modeling. In our experience, temporally dynamic covariates 
are most often those in critically short supply.

The most time-consuming step we have experienced in the analysis of 
focal species data is in data integration techniques (column 2, Figure 21.3) 
and in creating covariates for modeling and further analysis. This vast sub-
ject lies beyond the scope of this chapter. There are many early and devel-
oped utilities that are moving rapidly in the right direction to remedy this 
shortfall. TOPS (see chapter in this volume) serves as an excellent example of 
a data integration system useful for creation of many covariates. We also 
refer the reader to http://geospatialdatawiki.wikidot.com/ and www.clima-
tescape.net as examples of both a source and portal to examine further links 
and techniques to discover and then access covariates or proxy measures. 
Table 21.2 gives examples of recently created covariates using data integra-
tion techniques, in particular, using data from space-borne, airborne, and 
ground sensor networks to create previously unavailable geospatial covari-
ate layers at various temporal resolutions.
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21.8 Ecosystem Assessment and Diagnosis

Once the needed covariates have been identi#ed and created they can be 
accessed and manipulated using a recently developed software tool called the 
Customized Online Aggregation & Summarization Tool for Environmental 
Rasters or COASTER (www.COASTERdata.com). This tool has two major 
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FIGURE 21.4
Four different geospatial covariates created to avoid “de#cient” models which lead to errone-
ous conclusions and poor inference. Percent surface water (PSW) at Yukon Flats National 
Wildlife Refuge, Alaska (lower right). Lesser scaup (Aythya af!nis) breeding pairs were mea-
sured in response to the intra- and inter-annual variability of PSW. The number of frost-free 
days (Kim et al. 2010) across North America were used to estimate changes in the timing and 
duration of the growing season for analysis of migratory waterfowl (upper right). These data 
were generated using merged SSMR and SSM/I data and can be retrieved at (http://freez-
ethaw.ntsg.umt.edu). We created classi#cation maps of coarse woody debris biomass in the 
areas burned in the great #res of 1988 in Yellowstone National Park (YNP) using AIRSAR and 
AVIRIS data (Huang et al., 2009). The proportion of standing vs. downed CWD was also esti-
mated (lower left) using these procedures. Inclusion of the CWD data into the CASA ecosystem 
model resulted in large portions of YNP switching from a carbon sink to a carbon source. 
CASA_Express, an ArcGIS version of CASA was used to generate estimates of annual forage 
production (biomass available to ungulates) using MODIS EVI data (upper left). These data 
were then used in spatio-temporal models to predict seasonal movements of elk (Cervus ela-
phus) and bison (Bison bison) in and out of YNP (Geremia et al., 2011).
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TABLE 21.2

A List of the Available Geospatial Data Products we Considered for Use in the 
Analysis of Focal Species Populations in the Northern Rockies Ecoregion

NASA Data Product (Variables and 
Covariates) Frequency Period Resolution

Terrestrial Observation and Prediction System
Evapotranspiration (TOPS ET) Daily 1950–Present 1 km
Solar radiation (TOPS SRAD) Daily 1950–Present 1 km
Snow water equivalent (TOPS SWE) Daily 1950–Present 1  km
Temperature (min/max) (TOPS MIN, MAX Daily 1950–Present 1  km
Precipitation (TOPS PRCP) Daily 1950–Present 1  km
Snow temperature (TOPS SNWTMP) Daily 1950–Present 1  km
Vapor Pressure De"cit (TOPS VPD) Daily 1950–Present 1  km
Gross primary productivity (TOPS GPP) 8-Day 2000–Present 1  km
*Soil cover (% sand, %silt, %clay, hydro, root 
depth

Static Recent 1  km

Snow Extent 16-day 2000–Present 1  km
Landcover (IGBP & UMD) Static Single Years 1  km
EVI and NDVI – Vegetation indices 8-Day 2000–Present 1  km
FPAR – Photosynthetic Active Radiation 8-Day 2000–Present 1  km
LAI – Leaf Area Index 8-Day 2000–Present 1  km

CASA_Express Wetlands version
NPP, Net primary productivity W,M,A ‘84/’00–Present 250 m/30 m
*Soil Moisture—3 layers to root depth W,M,A ‘84/’00–Present 250 m/30 m
*PET, Potential Evapotranspiration W,M,A ‘84/’00–Present 250 m/30 m
*Herbaceous (Foliar) Biomass Production M,A ‘84/’00–Present 250 m/30 m
*SWE, Snow Water Equivalent D,W,M ‘84/’00–Present 250 m/30 m
*Snowmelt Rate W,M ‘84/’00–Present 250 m/30 m
*Water Temperature in Rivers and Lakes W,M ‘84/’00–Present 250 m/30 m
Growing Season Length (in days) Annual ‘84/’00–Present 250 m/30 m
Drought—User Speci"ed and Probabilistic Annual ‘84/’00–Present 250 m/30 m

Disturbance Classes (MODIS derived)
Urban Expansion Annual 2001–Present 250 m
*Agriculture Expansion—New Irrigated 
Cropland

Annual 2001–Present 250 m

*Agriculture Expansion—CRP for two years 
or more

Annual 2001–Present 250 m

*Wetland Conversion to cropland Annual 2001–Present 250 m
*Wetland Loss (drained or dried out) Annual 2001–Present 250 m
*Wetland Expansion Annual 2001–Present 250 m
Fires (nonforest) Annual 2001–Present 250 m
Fires (forested) Annual 2001–Present 250 m
Insect kill (forested) Annual 2001–Present 250 m
Logging (forested) Annual 2001–Present 250 m
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functions within EAGLES: (1) data discovery and (2) data access. COASTER 
allows end-users to identify and extract desired subsets of RS covariates from 
archived geospatial databases (~1 TB and larger). These typically reside on 
servers and supercomputers. The subsetted covariates are accessed via 
COASTER, then posted to an ftp site for input into the EAGLES environment 
for further analysis (column 3, Figure 21.3; see http://coasterdata.net/Examples.
aspx for examples). Second, it allows end-users to conduct ecosystem and vul-
nerability assessments through use of basic functions that summarize, thresh-
old, and compare covariates across space and time. Additional functions allow 
the creation of visualization models to assess, for example, how key climate 
metrics are driving changes in plant productivity. Most simply, this can be 
done through creation of trend maps and anomaly detection. Figure 21.5 pro-
vides a trend map of climate anomalies for the Northern Rockies region cre-
ated in COASTER. The combination of functions within COASTER provides 
desktop capability for characterization of ecosystem condition, function, pat-
tern, and process in a speci#c area of interest, for example, a refuge or a man-
agement region. It can also be used to create new covariates needed for further 
analysis of species legacy data. At a more streamlined level, end-users may 
arrive at a suf#cient level of decision support directly within the COASTER 
suite of utilities (data visualization and change detection, trend, threshold, and 
anomaly metrics) and elect not to proceed further in the EAGLES framework.

The conversion of input data types into a standardized protocol is accom-
plished with the software tools that reside in the EAGLES work"ow architec-
ture. These functions are programmed to be compatible with, or are already 
included in, the ArcGIS environment. They can also be further modi#ed by 
expert users. These include resampling, interpolation, simulation modeling, 
statistical correction of bias, and calibration/validation of the #nal mapped 
products. Two components occur outside the work"ow, (1) datum and 

TABLE 21.2 (continued)

A List of the Available Geospatial Data Products we Considered for Use in the 
Analysis of Focal Species Populations in the Northern Rockies Ecoregion

NASA Data Product (Variables and 
Covariates) Frequency Period Resolution

Other Remote Sensing Products
*Percent Cover of Shrubs, Herbacious, Soil Static Recent 30 m
*PSW, Percent Surface Water 8-Day 2000–Present 1 km
Freeze–Thaw Parameters (Frozen/Thawed/
Trans.)

Daily 1979–Present 25 km

Temporal resolution, temporal extent, and spatial resolution must all be carefully considered in 
the selection and interpretation steps of modeling efforts in EAGLES. D = Daily, 
W = Weekly, M = Monthly, and A = Annual. We placed a large emphasis on those prod-
ucts related to water and wetlands (in bold) due to the strong relationship between water 
and biodiversity. Products marked with an asterisk had to be validated in select locations 
prior to their use in predictive modeling.
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FIGURE 21.5
These maps illustrate some of the functionality available within the COASTER system. To cre-
ate these maps, gridded, daily maximum temperature datasets from March 21st through June

K11949_C021.indd   512 7/6/2011   2:31:51 PM



513Monitoring and Modeling Environmental Change in Protected Areas

 scaling integration and (2) creation of unique or nonstandard RS products, 
for example, geospatial covariates speci#c to analysis and predictive model-
ing of a given focal species. These unique RS products may be essential for 
successful modeling efforts. For example, in order to support a waterfowl 
model from annual counts of breeding pairs, we created a fractional surface 
water product (see Figure 21.4b) from MODIS that produces estimates every 
eight days (Weiss and Crabtree, submitted). This RS product met an identi-
#ed critical need suggested by a federal agency practitioner working group 
focused on waterfowl and shorebird populations.

21.9 Statistical Analysis and Modeling

Figure 21.6 provides an example of our Data Exploration Toolset or DET 
(Zuur et al., 2010) as applied to analysis of pronghorn (Antilocapra americana) 
data in Yellowstone National Park, WY. The utility of data exploration before, 
during, and after modeling cannot be overstated. Data exploration serves 
a vital role in testing assumptions (e.g., about the distribution of the data, 
the relative contributions of extreme values, and the presence of underlying 
 patterns that may require more thought). As the sophistication of RS data 
inputs increases, the investigation of unexpected patterning of relationships 
within and among covariates becomes increasingly important. Making use of 
a readily available and standardized toolbox for investigation the patterning 
of dependent and independent variables has proven to be of great utility.

After data exploration procedures, end-users are now ready for diagnostic 
analysis using various statistical models. For this, we created a conceptual 
and practical framework for analysis of species populations and their habi-
tats called Risk-Reward Spatial Capacity (RRSC) models. These are a pro-
gressive series of spatially explicit species population models that can be 
diagnostic and/or predictive. Historically, species–environment models (e.g., 
Scott et al., 2002) focus on desirable habitat conditions, leaving out important 
risk or hazard conditions and their impacts on vital rates (Wittmer et  al., 

FIGURE 21.5 (continued)
21st were summarized for each year and for all years from 1955 to 2009. The top three maps 
show (from top to bottom) the minimum, mean, and maximum average springtime tempera-
tures for the Paci#c Northwest. These graphs are conceptually similar to the normal high, 
record high, and record low values typically provided within weather reports on the local 
news. However, instead of the conditions for a single day the maps show conditions summa-
rized for all days within spring. The lower map, in contrast, shows how conditions in the 
spring of a single year (1988) differ from normal conditions. This map was created by subtract-
ing the average springtime high temperature (i.e., the second map) from the springtime tem-
peratures summarized for 1988, which was one of the warmest years on record in the United 
States. 
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2007). It is clear that inclusion of spatial information on hazards such as pre-
dation risk can expose sublethal effects on species distributions and vital 
rates. Similarly, in the temporal domain, extreme weather and disturbance 
events, which can often be characterized as single-event hazards, are essen-
tial to integrate into species modeling efforts and can have long-lasting 
impacts on populations.

The RRSC framework provides a logical progression of legacy data set 
analysis starting with basic coarse-scale species distribution models (SDMs) 
to identify and delineate critical habitat components. Next, #ne-scale habitat 
selection models that include temporally dynamic information, either implic-
itly (time for space substitution) or explicitly (time-varying model structure) 
can be constructed. Both SDMs and habitat selection models can then be 
used to identify and #lter out important covariate structures prior to demo-
graphic analysis and modeling (vital rates and abundance as related, ulti-
mately, to #tness). Species must survive environmental risks and then utilize 
resource (habitat and prey/forage) to successfully reproduce and increase 
#tness. Species abundance at a given time is essentially the result of survival 
(loss) and reproduction (gain).

As a #rst RRSC model within EAGLES, we developed an ArcGIS tool for 
analysis of species location data using a recent modi#cation of a widely used 
technique called Resource Selection Functions or RSF (Manly et al., 2002). 
This falls under a more general category referred to as resource selection 
analysis, hence our RRSC-RSA tool. This type of RSF model is described in 
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FIGURE 21.6
Example of the utilization function in the EAGLES Data Exploration Toolset (DET). The sum-
mer 2008 relocations presented in Figure 21.7 (purple spears) are summarized above as a three-
panel frequency histogram for the covariate “elevation.” The top displays the actual response 
data or “use points”; the middle displays a random sample of points within a 1 km buffer area 
around the response use points and; the bottom panel displays a random sample of points 
within the study area (user-de#ned region of interest for model inference) (n = 10,000 random 
points).
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Lele and Keim (2006) and Lele (2009), and provides a probabilistic approach 
to identifying regions and resources/risks that are used more/less than 
expected. These approaches are robust and are additionally appealing 
because they create empirical response plots and probabilistic maps (resource 
selection surfaces) across the study area of interest. These are particularly 
useful for threshold delineation, for example, for explicating the patterning 
of animal response data against each covariate (e.g., polar bear, Ursus mariti-
mus, vs. sea ice density). Originally developed in R, we have translated this 
approach into an ArcGIS platform, and have developed numerous diagnos-
tics and interactive decision-points for end-users, providing a transparent, 
repeatable process or “white-box” approach. We have also developed and 
documented a suite of RRSC modeling approaches (e.g., GLM, GLM with 
spatial autocorrelation, and GAMs) for habitat and demographic analysis in 
R and are in the process of translating them into the ArcGIS environment.

Figure 21.7 provides a visualization of how a merged data array (MDA) is 
created from the legacy and covariate data sets and then input into a habitat 
model for diagnostic analysis and #nal model output. These and related 
functions and tools are available as ArcGIS plug-ins. Again, the speci#cs of 
the data sets will dictate the speci#c processing chain or pathways through 
EAGLES. The original or modi#ed MDA can also be run through other path-
ways and various statistical models to explore further relationships and test 
hypotheses. The output of the RSPF analysis is shown at the bottom of Figure 
21.7 as a predicted probability surface within the region-of-interest or sam-
pling universe (bottom of Figure 21.6). This probability surface was used to 
estimate a species distribution, delineate critical habitat, identify critical hab-
itat components, and provided a probabilistic resource selection/avoidance 
surface with measures of uncertainty per pixel. Table 21.3 provides results of 
the pronghorn RSPF model. Many other diagnostics are provided as well as 
intermediate steps and decision points that guide the end-user through the 
statistical analysis.

Once a diagnostic model has been developed, we have developed other 
tools to create prognostic models and explore “what-if” scenarios. One tool 
ingests and manipulates downscaled future climate scenarios and another 
allows end-users to apply RRSC models to different areas or under different 
habitat scenarios such as habitat restoration, development, and disturbance 
events (#re, drought, snow-hardening events, and a variety of land-use activ-
ities). The “SWAP tool” is an ArcGIS utility that allows the end-user to mod-
ify a covariate value in an existing model structure, holding all else constant, 
and examining resultant changes in modeled output. For example, an exist-
ing diagnostic model structure (Figure 21.7) created the output in Table 21.3. 
The SWAP tool allows the end-user to simulate (or forecast) a new covariate 
(or a new range of values for an existing covariate, e.g., increase biomass, 50% 
increase in precipitation, new road as in Figure 21.8) by swapping out the 
previous covariate value with the new one. The predictive model structure 
and coef#cients stay the same while only the new covariate values—new or 
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future scenarios—are inserted and the model re-run. The original diagnos-
tic model was modi#ed to create a “what-if” scenario by adding a road 
(Figure 21.8). It was then re-run to create prognostic model output that pre-
dicts how pronghorn would respond as well as how critical habitat may be 
functionally removed or improved.

The Future Climate Tool or FcModelBuilder (listed in Table 21.1) is a simi-
lar tool that ingests and manipulates downscaled future climate scenarios 
(IPCC, AR4, etc.) and another allows end-users to apply RRSC models to dif-
ferent areas or under different habitat scenarios such as habitat restoration, 
development, and disturbance events (#re, drought, snow-hardening events, 
and a variety of land-use activities). Through a disciplined, documented, 
and transparent diagnostic modeling processes, end-users can then utilize 
these tools to build prognostic models to effectively support scenario con-
struction guiding site-level actionable outcomes. Such ecological forecasting 
(Clark, 1999) is an emerging subdiscipline in ecology that has many unsolved 

FIGURE 21.7
(See color insert.) Visualization of co-registered GIS layers generated using various data inte-
gration procedures in EAGLES, a set of decision-support tools integrated into ESRI’s ArcGIS 
environment. Four geospatial data layers, generated for resource selection analysis (RSPF, Lele 
and Keim, 2006) of pronghorn summer habitat selection, are (from top to bottom): (a) forage 
biomass created by the CASA model assimilating MODIS EVI data (Potter, 2007), (b) coyote 
utilization created from kernel density smoothing (cite) of relocations of radio-marked adults, 
(c) elevation and aspect from a USGS 30 m DEM, and (d) a remotely sensed classi#cation map
of forest (dark green) and sagebrush (light green) using PALSAR and Landsat ETM data. The
locations of radio-tracked pronghorn adults (response data used in the RSPF model) are indi-
cated as coregistered purple “spears.” The bottom layer is the resource selection probability 
surface generated by the EAGLES RSPF model tool where “warmer” temperature colors indi-
cate higher probability of use (ranging from selected to avoided habitat areas) by pronghorn 
during the summer.
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issues, not the least of which is how one independently validates such future 
forecasts for conservation action. Making sense of the chaotic and disarticu-
lated array of old and emerging issues involved in future predictions and 
decision-making (issues of scale, components, instrumentation, algorithm 
function, information about uncertainty and assumptions, and statistical 
issues) (see Fulton, 2010) can be helped by beginning with a standardized, 
highly documented, and inter-comparable common set of inputs and meth-
ods (e.g., Hijmans et al., 2005) as we have outlined in this chapter.

21.10 Conclusions

Maintaining resilient plant and animal communities within managed PA 
ecosystems is becoming a daunting challenge. Yet PAs often have internal 
monitoring programs in place that produce legacy data sets as well as 
national and global monitoring efforts producing vast streams of environ-
mental data (ground-, air-, and space-borne sensors). We contend that the 
analysis and modeling of these “merged” data sets provide our best hope for 
crafting successful adaptation strategies to environmental change agents, 
especially those being complicated by climate disruption. The generalized 
modeling approach—from narrative, conceptual models to visual, spatially 
explicit population models—provided by EAGLES allows a solution to these 
challenges as well as a bridge between science and decision-makers. 
Conservation of species and the ecosystem processes that support them will 

TABLE 21.3

Model Results for the Pronghorn Example Depicted in 
Figure 21.7

Parameter t-Value p-Value v-i-f

(Intercept) –2.76 5.92E–03 NA
Distance to road (+) 3.59 3.52E–04 1.8
Distance to road ^2 (-) –6.98 6.51E–12 1.3
Coyote (+) 4.64 4.11E–06 1.4
Elevation (–) –5.91 5.19E–09 2.6
Forage (+) 2.51 1.23E–02 2.8
June NPP (–) –2.15 3.19E–02 2.3
% Sage (–) –3.1 2.01E–03 1.5
% Forest (–) –3.45 5.92E–04 3.5
% Herbaceous (+) 2.45 1.45E–02 2.4
Slope (–) –4.68 3.40E–06 1.4
Wolf (–) –8.35 3.29E–16 1.1

The VIF, variance in"ation factor, is a measure of multicollinearity among 
the independent variables, that is, it gives a measure of correlation.
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Pronghorn observations 
GYA Roads
Hypothetical road addition

Pronghorn observations 
GYA Roads
Hypothetical road addition

RSPF fit
Value

High : 0.286773 

High : 0.286773 

Low : 0

Low : 0

RSPF fit-hypothetical road addition 
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FIGURE 21.8
A portion of the original RSPF model output (bottom layer of Figure 21.7) indicating the 
resource selection function for pronghorn in Yellowstone National Park (left). The SWAP was 
used to create an additional road shown in orange. The new prognostic RSPF model output for 
pronghorn (right) indicates that pronghorn are excluded from portions of their original 
selected habitats. These types of What-if-Scenario (WIS) will provide practitioners with impor-
tant decision support to guide site-level action plans, restoration efforts, and understand the 
environmental impacts from climate disruptions, invasive species, changing land-use, and 
disturbance regimes.
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require a more effective set of programmatic linkages (e.g., DSTs), narrowing 
the gap between scientists (researchers and academics) who are forging 
ahead with new methodologies, and the end-user practitioners (biologists, 
managers, conservationists) who require straightforward, cost-effective tools 
in order to make informed and defensible decisions based on diagnostic and 
predictive modeling. Casting and comparing these activities against the con-
cepts and metrics of “benchmark ecosystems” will provide yet another set of 
powerful adaptive management techniques leading to resilient species and 
ecosystems.

The modeling approaches we describe are not new. But lowering the bar-
rier of entry for users as they approach an increasingly complex analytical 
environment seems useful. Among various factors limiting the development 
and use of predictive landscape models, the lack of access to known, causal 
covariates may be the most problematic. This leads to “de#cient” models that 
are the antithesis of the scienti#c principles: predictive models that exclude 
explanatory variables are equivalent to conducting science without explana-
tory alternate hypotheses. It is unfortunate that many needed explanatory 
covariates simply do not exist or are too expensive to acquire. However, with 
the advent of many new RS sensors, data products (e.g., free MODIS data 
products), and assimilation models that ingest RS data, we can now create 
direct or proxy measures of those needed covariates. For example, Geremia 
et al. (2011, accepted) derived annual estimates of above-ground forage bio-
mass and weekly snow-water-equivalents from sensor-assimilation models. 
Those two factors were crucial in predicting winter bison (Bison bison) move-
ments outside of Yellowstone National Park, a famous benchmark ecosystem.

While new information and technology is emerging at unprecedented 
rates, environmental impacts on species populations are in a state of "ux due 
to the cumulative impacts of human activities on landscapes. Invasive 
spread, pathogen outbreaks, land-use activities, and especially climate dis-
ruption and its associated impacts—severe drought, reduced stream "ow, 
increased wild#re frequency, extended growing season, and extreme weather 
events—are increasing, and in some cases accelerating. These changes are 
outpacing management and conservation actions. In particular, the increase 
in frequency and severity of climate-mediated impacts (e.g., record drought 
in the Northern Rockies) are now occurring at larger, landscape to regional 
scales. This combined with unpredictability and unexpected interactions are 
rendering traditional management strategies ineffective at sustaining ecolog-
ical function, resiliency, and viable species populations.

As a solution to this uncertain future, we have described the EAGLES 
framework and provided example of DSTs, important geospatial covariates, 
ecosystem assessment tools, and initial RRSC species population models for 
analysis of focal species. It will allow agencies like the FWS (and the new 
LCC program) the ability to examine what–if scenarios guiding outcomes-
driven, on-the-ground actions to recover or maintain populations. Restoration 
in response to disturbance, acquisition of additional habitat, and regulation 
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of risk factors such as hunting and predation are examples of such outcomes-
driven actions. These necessitate the need for models that are spatially 
explicit because decision-makers regulate land-use activities or conduct habi-
tat management at the site level (e.g., forest stand, allotment, and refuge scales). 
At the same time, multiple impacts are occurring at unpredictable, multiple 
temporal scales from periodic oscillations (e.g., ENSO), planned disturbance 
events, and daily extreme weather events. Thus, spatially explicit models also 
need to incorporate such temporally dynamic information. In this highly 
uncertain spatiotemporal frame it seems imperative to adhere to standard-
ized, transparent, and defensible processes in arriving at science-based man-
agement decisions, so that we are able to systematically track, measure, and 
evaluate outcomes, such as species persistence, as clearly as possible.
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