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Abstract. The introduction of nonnative pathogens is altering the scale, magnitude, and
persistence of forest disturbance regimes in the western United States. In the high-altitude
whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white
pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the
principal cause of tree mortality in many locations. Although blister rust eradication has failed
in the past, there is nonetheless substantial interest in monitoring the disease and its rate of
progression in order to predict the future impact of forest disturbances within this critical
ecosystem.

This study integrates data from five different field-monitoring campaigns from 1968 to
2008 to create a blister rust infection model for sites located throughout the GYE. Our model
parameterizes the past rates of blister rust spread in order to project its future impact on high-
altitude whitebark pine forests. Because the process of blister rust infection and mortality of
individuals occurs over the time frame of many years, the model in this paper operates on a
yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly
infected, moderately infected, and dead. In our analysis, we evaluate four different infection
models that compare local vs. global density dependence on the dynamics of blister rust
infection. We compare models in which blister rust infection is: (1) independent of the density
of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static
global infection rate among all sites, and (4) both locally and globally density-dependent.
Model evaluation through the predictive loss criterion for Bayesian analysis supports the
model that is both locally and globally density-dependent. Using this best-fit model, we
predicted the average residence times for the four stages of blister rust infection in our model,
and we found that, on average, whitebark pine trees within the GYE remain susceptible for 6.7
years, take 10.9 years to transition from slightly infected to moderately infected, and take 9.4
years to transition from moderately infected to dead. Using our best-fit model, we project the
future levels of blister rust infestation in the GYE at critical sites over the next 20 years.

Key words: alternate hosts; Bayesian statistics; blister rust; Cronartium ribicola; Greater Yellowstone
Ecosystem; nonnative pathogen; pathogen modeling; Pinus albicaulis; whitebark pine.

INTRODUCTION

The role of humans in altering ecosystem disturbances

has increased dramatically over the last century,

especially in the western United States, where intro-

duced pathogens are creating novel disturbance regimes

(Logan et al. 2003, Ellison et al. 2005). As a result, the

economic and ecological consequences of the introduc-

tion of nonnative forest pathogens have presented a

tremendous challenge for forest managers (Brown and

Hovmoller 2002). The introduction of white pine blister

rust (Cronartium ribicola), which is a now a principal

cause of mortality within whitebark pine (Pinus albi-

caulis) populations at high altitudes in the Greater

Yellowstone Ecosystem (GYE), serves as a dramatic

and devastating example of the effects of an introduced

pathogen on North American forests (Kendall and Arno

1990).

White pine blister rust is a nonnative fungal pathogen

that was introduced to North America near British

Columbia in 1910 on a stock of white pine imported for

plantation (Spaulding 1922, Maloy 1997). It propagates

through two obligate alternate hosts: five-needled pines

and either shrubs belonging to the genus Ribes or select

herbaceous species within the family Orobanchaceae:

scarlet Indian paintbrush (Castilleja miniata), sickletop
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lousewort (Pedicularis racemosa), and bracted lousewort

(Pedicularis bracteosa). Despite a continental-scale

federal program to eradicate white pine blister rust

from the U.S. landscape that began in the 1930s and ran

until 1965, white pine blister rust still pervades high-

altitude five-needled pine forests within much of the

western United States (Smith and Hoffman 2000).

Pathogens such as white pine blister rust operate

through mechanisms that function at the cellular level,

yet they produce disturbance patterns with cascading

effects that scale up to measurable changes throughout

the landscape (Castello et al. 1995, Moorcroft et al.

2006). Pathogen disturbances in forests can produce

dramatic ecosystem-scale effects through the reorgani-

zation of community structure (Frelich and Reich 1999)

in addition to the alteration of abiotic processes such as

hydrology and soil composition (Ellison et al. 2005).

Consequently, ecologists have identified many links

between pathosystem dynamics, which describe the

ecological connections between pathogen and host

populations, and biotic heterogeneity, such as landscape

connectivity patterns, as well as with abiotic heteroge-

neity, such as topography (Holdenrieder et al. 2004).

Epidemiology models at the landscape scale have

indicated that the spatial extent (O’Neill et al. 1992)

and rate (Park et al. 2002) of pathogen-caused

disturbance interact through feedbacks, with spatially

explicit landscape patterns at both the local and regional

scales (Park et al. 2001). Because whitebark pine is a

keystone species within high-altitude ecosystems

(Tomback et al. 2001), and because pathogens often

operate in ways that are spatially explicit, we expected

that spatial environmental covariates, driven by differ-

ences in elevation, slope, and aspect within these high-

altitude environments, might predict the landscape-level

population dynamics of the historic spread of white pine

blister rust in whitebark pine within the GYE.

In this analysis, we constructed a metapopulation

model for the spread of blister rust in whitebark pine,

based on field surveys collected between 1968 and 2008.

This analysis used a data set aggregated from five

different monitoring campaigns to estimate transitions

between four stages of white pine blister rust infection

(susceptible, slight infection, moderate infection, and

dead) at 121 sites throughout the GYE from 1968 to

2008. In the formulation of our model, we included a

site-specific parameter that we used to compare differ-

ences between infection rates at different sites with

possible environmental drivers of white pine blister rust

dynamics. We created our infection model using a

Bayesian statistical framework, which permitted the

modeling of 95% confidence intervals for the four levels

of infection in 1968–2008, where data exist, and also in

our future projections of blister rust infection.

Furthermore, the Bayesian framework of our model

permitted the inclusion of informed priors, where we

used the field experience of forest managers in the GYE

to set an informed starting point for our parameters.

Whitebark pine trees exist only at high elevations

throughout the GYE, and patches of whitebark pine
trees occur between distances where it is critical to

analyze both local and global infection dynamics in a
metapopulation structure. Within this work, we define
local dynamics as infection that results from white pine

blister rust within the same field site, whereas global
dynamics are defined as infection that occurs between

sites, regardless of distance. Using the infection model,
we tested four hypotheses for the mechanistic popula-
tion-level infection dynamics of blister rust operating

within the GYE: (1) blister rust infection is independent
of infected tree density, (2) blister rust is proportional to

the local infected tree density, (3) blister rust infection is
proportional to the local infected tree density, with a

static background global infection rate, or (4) blister
rust is proportional to both the local and global infected
tree density. Although this model is parameterized with

a data set based on current environmental conditions, it
nonetheless yields key insights into the population

dynamics of white pine blister rust infection, in addition
to providing critical information regarding the residence
time within each class of infection within the GYE based

on the infection dynamics within the past 40 years.

METHODS

Pathology

White pine blister rust has a complex life history, with
five spore stages and two obligate alternate hosts

(Arthur 1934), outlined in Fig. 1. White pine blister

FIG. 1. Blister rust (Cronartium ribicola) spreads through
two alternate hosts, members of the genus Ribes or select
members of the family Orobanchaceae, and whitebark pine.
The fungus can only overwinter in whitebark pine, so the
spread from whitebark pine to an alternate host to another
whitebark pine must occur within a single growing season. It is
important to note that the fungus cannot spread from pine to
pine, but must pass through an intermediate alternate host
species.

June 2011 1139MODEL FOR HOST-SPECIFIC FOREST PATHOGEN



rust does not spread directly from one whitebark pine

tree to another, but requires intermediate infection

within an alternate host. The most numerous and widely

distributed alternate hosts for blister rust within the

GYE are various species of currants and gooseberries,

which are members of the genus Ribes (Snell 1942). In

Asia, which is the biogeographic origin of the blister rust

pathosystem, plant species within the Orobanchaceae

family have also been recognized as alternate hosts for

blister rust (Yi and Kim 1983, McDonald et al. 2006),

although field observations of white pine blister rust

infection on species of Orobanchaceae have yet to be

recorded within the GYE. In 2004, for the first time in

North America, two additional alternate hosts in the

Orobanchaceae plant family, the sickletop lousewort

(Pedicularis racemosa) and scarlet Indian paintbrush

(Castilleja miniata), were described as naturally occur-

ring alternate hosts for blister rust in northern Idaho,

USA (McDonald et al. 2006). Blister rust alternate host

infection was also described in bracted lousewort

(Pedicularis bracteosa) in 2006 at the same field site in

northern Idaho (Zambino et al. 2007). Whether these

recent discoveries represent newly evolved strains of

blister rust, new introductions of a different genotype, or

simply that forest managers failed to previously

recognize white pine blister rust infections on members

of Orobanchaceae remains to be resolved.

Explicitly monitoring and modeling the intra-annual

spread of white pine blister rust between its alternate

hosts is difficult because there are .17 species of Ribes

and at least three species of alternate hosts in the

Orobanchaceae family that are prevalent within the

GYE and would require intensive white pine blister rust

surveys during a small temporal window of spore

activity to determine the prevalence of infection.

Therefore, within this study, we focus on the interannual

progress of white pine blister rust infection, and our

model calculates infection levels at an annual time step.

By choosing an annual timescale, we do not explicitly

model the infection within alternate host populations,

because white pine blister rust can only overwinter

within the woody tissue of whitebark pine. Although our

model only represents blister rust infection within trees,

we implicitly consider the impact of alternate hosts

through our model formulations that consider locally

density-dependent infection, described in the section

Model formulation.

Data

For most forest pathogens, including white pine

blister rust, it is difficult to observe the physical presence

of the pathogen itself, and instead field data are collected

on the symptoms exhibited by host individuals. The field

data used in this analysis were gathered during surveys

from 1968 to 2008 at irregular temporal intervals due to

the large amount of time and resources required of high-

altitude forest inventories. The field data are aggregated

from five different sources: the Interagency Whitebark

Pine Monitoring Group (IWPMG), the National Park

Service (NPS), the U.S. Geological Survey (USGS)

Northern Rocky Mountain Science Center, the

University of Montana (UMT) College of Forestry and

Conservation, and the Yellowstone Ecological Research

Center (YERC). See Fig. 2 for the spatial distribution of

study sites used in this analysis. The sampling protocols,

summarized in Table 1, vary by study. In the formation

of all study designs within the aggregate data set, sample

plots or transects were randomly located within forest

stands that were considered as ‘‘representative’’ for

whitebark pine throughout the surrounding area. Thus,

the combined data set overall could be biased toward

sampling trees at the center of stands, and might be

lacking data in areas with very low numbers of whitebark

pine trees. Because many of the plots were located within

the Yellowstone National Park boundary, plot locations

could not be permanently marked and trees could not be

FIG. 2. For our study, blister rust field data are aggregated
from five different sources across the Greater Yellowstone
Ecosystem (GYE), USA, for the years 1968–2008. This data set
contains much of the spatial variation within whitebark pine
populations in the GYE. YERC is the Yellowstone Ecological
Research Center in Bozeman, Montana. The data sets mapped
here reflect those outlined in Table 1.

JACLYN A. HATALA ET AL.1140 Ecological Applications
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tagged, precluding the use of simpler demographic

models that track the fate of individual trees.

Accordingly, plot re-censuses were treated as repeated

samples from a local population rather than re-measure-

ment in the strict sense.

Tree evaluation protocols varied between study

groups, but all protocols recorded the presence or

absence of white pine blister rust symptoms, including

bole cankers, fruiting bodies, and rodent chewing

(indicating consumption of a canker) on individual

trees. The NPS, USGS, and YERC protocols evaluated

trees in four classes of white pine blister rust infection

that were adopted as the four classes used for the

infection model: susceptible, slightly infected, moderate-

ly infected, and dead (National Park Service 1968–

1971). The UMT protocol recorded a more detailed 1–

18 infection score for each tree (Six and Newcomb

2005). These 18 infection classes were translated into the

four classes established in the YERC and USGS

protocols by using a decision tree. The decision tree

first separated uninfected trees into the susceptible class,

and then separated the classes of infected trees by scores

of less than 9 into the slightly infected class, scores of 9–

15 into the moderately infected class, and scores of 16–

18 into the dead class. The IWPMG data set was

developed using a more descriptive protocol that

evaluated trees based on the number of cankers in each

one-third of the tree branch area and in each one-third

of the total tree bole. These data were also translated

into four infection classes by a decision tree that first

separated uninfected trees into the susceptible class and

dead trees with signs of past blister rust infection into

the dead class. The decision tree next separated trees

with cankers in one-third or less of the total bole or

branches into the slightly infected class, and trees with

cankers in two-thirds or greater of the total bole or

branches into the moderately infected class. Parsing the

UMT and IWPMG data into these four classes by

decision trees yielded a large, but simplified, data set that

is ecologically informative for population-level study

and computationally efficient. Bayesian modeling ac-

commodates the differences in sampling methods

between data sets, because observation error is modeled

as a posterior distribution of values, rather than as a

single-value parameter.

Model formulation

The model in this study parameterized the transition

rates between four classes of blister rust infection

(susceptible, slightly infected, moderately infected, and

dead) outlined at each site k as: Sk!Ik!Mk!Dk. The

hierarchical Bayesian formulation (sensu Clark 2007)

used in this analysis consists of three sub-models: the

data model, the process model, and the parameter model

(Fig. 3). The data model estimates the proportion of

trees in each blister rust infection class at each site and

year based on the field data, which describes the number

of trees within each white pine blister rust infection class

at each field census. In doing so, it accounts for sampling

error by attributing different levels of confidence about

infection rates that result from different sampling

schemes. Observation errors associated with tree mis-

TABLE 1. Five field protocols for data sets (1968–2008) assimilated into the metapopulation study of blister rust (Cronartium
ribicola) infection in whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE).

Data set
collector Years No. sites Survey method Site establishment method Source

IWPMG 2004, 2007 22 10 3 50 m transects randomly located in the
GYE grizzly bear
Primary Conservation
Area, in whitebark pine
stands .2.5 ha

GYIWPMG (2007)

NPS 1968/1970, 2008� 19 28-tree plots of
variable length
and width

placed within Yellowstone
National Park in areas
of probable blister rust
infestation

Yellowstone National
Park (1968–1971)

USGS 1995/1996, 2008� 136 300 foot long
variable-width
transects and
0.1-acre plots

dispersed throughout the
GYE to encompass the
widest variety of
whitebark pine habitat
possible

Kendall (1995)

UMT 2001/2002, 2007� 20 variable-length
transects 10 m
wide

randomly located within
known whitebark pine
habitat

Newcomb (2003), Six
and Newcomb (2005)

YERC 2000, 2007 8 10 plots (5.2 m
radius) at each
site

sites selected to fall within
hyperspectral imagery
flightline

Halligan et al. (2003)

Note: Collectors, top to bottom, are: Interagency Whitebark Pine Monitoring Working Group, Bozeman, Montana; National
Park Service, Yellowstone National Park, Mammoth, Wyoming; U.S. Geological Survey, Northern Rocky Mountain Science
Center, Bozeman, Montana; University of Montana, School of Forestry, Missoula, Montana; Yellowstone Ecological Research
Center, Bozeman, Montana.

� Plots were re-censused in 2007/2008 by the Yellowstone Ecological Research Center, Bozeman, Montana, and the data are
previously unpublished.
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classification are assumed to be small and not system-

atically different among data sets. The field data at each
site k in each year t where data exists are modeled as a

multinomial distribution:

Nt;k ¼ ½NS;t;k;NI;t;k;NM;t;k;ND;t;k�; MultinomialðPt;k;Nt;kÞ

where the four elements of Nt,k represent the raw tree

count data in the four infection classes from the
aggregated data set, and as

Pt;k ¼ ½PS;t;k;PI;t;k;PM;t;k;PD;t;k�

where the four elements of Pt,k represent the proportion
of trees in each of the four blister rust infection classes.

The multinomial distribution is a generalization of the

binomial that describes the probability of observing tree
counts given N independent draws.

The process model describes the temporal dynamics of
the proportion of trees in each blister rust infection class

Pt,k as the infection progresses at each site k at the

annual time step, t. Disease progression is modeled as
the transitions between the four classes of infection at an

annual time step using a matrix model,

Pt;k ¼ AkPt�1;k

which indicates that the proportions of trees within the

infection classes Pt,k at each site k in each year t are
determined by the proportions in each infection class in

the previous year multiplied by the site-specific transi-
tion matrix Ak:

Ak ¼

aSS;k 0 0 0

aSI;k aII;k 0 0

0 aIM;k aMM;k 0

0 0 aMD;k aDD;k

0
BB@

1
CCA

where the elements of Ak represent the transition rates

between the four blister rust infection classes. The
elements of matrix Ak consist of both site-specific and

global parameters. Within our analysis, we constrain

aDD,k, the probability of remaining in the dead class, to

1, since removal from the dead class through decompo-

sition occurs on a much slower timescale than the scope

of our current model. Similarly, we assume that seedling

recruitment is negligible within the timescale of this

model, and thus the total population size remains

approximately constant. These constraints allow us to

simplify the model, so that the column sums of Ak equal

1, and we only need model the off-diagonal matrix

elements:

ak ¼ ½aSI;k; aIM;k; aMD;k�

where the elements of ak are the transition rates between

the four infection classes (susceptible, slightly infected,

moderately infected, and dead). The transition rates ak
are calculated as

ak ¼ aþ bk þ e

where a describes the global mean transition rate across

all sites between each of the four blister rust infection

classes, e describes the variance on the mean transition

process, and bk describes a site-specific transition

parameter. Within this analysis, a is modeled as

a ¼ ½aSI ; aIM; aMD�; N ða0;VaÞ

where the elements of a correspond to the transition

rates ak. The elements of a have a multivariate normal

prior with mean a0 and variance Va. The process

variance on a is modeled as a multivariate normal

distribution, with variance

e ¼ Ir2 ; N ð0; r2Þ

r2 ¼ ½r2
SI ;r

2
IM;r

2
MD�; IGðs0; s1Þ

where r2 includes the elements of a diagonal covariance

matrix that represent the process variance on the

transitions between the four classes across all sites, a.

FIG. 3. The parameters within the hierarchical model are mapped according to the three levels: the data model, the process
model, and the parameter model. During each time step t for each site k, the three modeling levels interact to drive the process of
infection between each of the four blister rust infection classes. Parameters are: Nt,k, the data vector for tree count in each of the
four classes (uninfected, slightly infected, moderately infected, dead) for year t and site k; Pt,k is the vector for the proportion of
trees in each of the four classes in year t and site k; W is the prior on Pt0;k ; a is the probability of transition between infection classes
across all sites; r2 is the variance on a; bk represents site-specific variation in transition probabilities for site k; s is the variance on
bk; s is the prior on r2; and q is the prior on s. Although most parameters within the model are fitted across all sites in the GYE, bk
varies at the site level.
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The elements of r2 are assumed to have inverse gamma

(IG) priors with parameters s0 and s1. Thus, a is

interpreted as the mean transition process between each

of the four classes across all sites, and r2 is the variation

on that process. The parameter bk describes the site-level
variation in the rate of disease progression as

bk ¼ ½bSI ; bIM; bMD�; N ð0; s2Þ

where bk are the elements of a diagonal covariance

matrix that represents variation within each site k on the

transitions between the four classes of white pine blister

rust infection. bk is modeled as a random site-specific

influence on the transition rate chosen within our model

from the multivariate normal distribution with mean 0

and variance s2. Because Pt,k describes the change in the

proportion of each infection class per year, alpha, beta,

and epsilon all have units of 1/year.

With these three parameters influencing the transition

rates, the state transitions for each class of blister rust

infection at each site k in each year tþ 1 are given as

Stþ1;k ¼ �ðaSI þ bSI;kÞSt;k þ eSI

Itþ1;k ¼ ðaSI þ bSI;kÞSt;k � ðaIM þ bIM;kÞIt;k þ eSI þ eIM

Mtþ1;k ¼ ðaIM þ bIM;kÞIt;k � ðaMDþ bMD;kÞMt;k þ eIM þ eMD

Dtþ1;k ¼ ðaMD þ bMD;kÞMt;k þ eMD:

As before, the proportions in each infection class in the

ext time step, year t at each site k, are determined by the

proportion of trees in each infection class at the current

time step multiplied by the transition rates, composed of

parameters a, bk, and, implicitly, r2. The three parameters

that contribute to variation in the process of blister rust

infection are outlined schematically as Fig. 4a, and the

improved performance of the model with the inclusion of

all three sources of process variability is plotted for one

example site as Fig. 4b. Note that, although the process is

computed at an annual time step, the parameters are

assumed to be time invariant.

Because the population at each site k, Pt,k, is not

evaluated annually within the aggregated data set every

year t, the posterior estimates of Pt,k, which are a latent,

unobserved quantity in the model, are constrained by

the population state at both the previous and following

time steps, Pt�1,k and Ptþ1,k, according to the process

model:

Pt;k ; N ðPtþ1;k jPt;k; r
2Þ � N ðPt;k jPt�1;k; r

2Þ:

Model formulation is simplified by the fact that each

plot has only been re-censused once, and thus the first

and last census were used as the starting and ending

points when modeling each site k. Modeling this process

constrained by the two field censuses introduces two

additional cases in the calculation of the process of

blister rust infection, where the first and last model steps

depend on the field data Nt,k:

Pt0;k ; N ðPt0þ1;k jPt0;k; r
2Þ �MultinomialðNt0;k jPt0;kÞ

� DirichletðPt0;k jWÞ

Ptend;k ; N ðPtend;k jPtend ;k; r
2Þ �MultinomialðNtend;k jPtend ;kÞ

where Nt0;k and Pt0 ;k represent, respectively, the number

and modeled proportion of trees in each of the infection

classes at the first field census, and Ntend;k and Ptend ;k

represent, respectively, the number and proportion of

trees in each infection class at the last field census. For

the initial time step there is a prior on the initial model

state, modeled by the Dirichlet distribution with shape

parameters W equal to 0.9, to represent a very low

probability of initial infection at all sites.

Metapopulation formulation

The model just presented describes the case of local

population dynamics at each site with a static infection

rate. To evaluate the dynamics of white pine blister rust

infection at both the local level within sites and the

global level among all sites, we created four dynamic

models. Two of the models only contain local infection

parameters, and the other two models take on a

metapopulation format, in which blister rust infection

occurs both within sites and among sites. Thus, the

differences between the models arise in the density

dependence of local and global infection. Although the

simplest model considers no density-dependent white

pine blister rust infection, the other models consider

combinations of local and global density-dependent

infection in order to evaluate the transition dynamics of

white pine blister rust infection. The differences among

the models arise in the terms describing the transition

between the susceptible and slightly infected class.

Model 1.—Static local infection:

Stþ1;k ¼ �ðaSI þ bSI;kÞSt;k

Itþ1;k ¼ ðaSI þ bSI;kÞSt;k � ðaIM þ bIM;kÞIt;k:

Model 2.—Dynamic local infection:

Stþ1;k ¼ �ðaSI þ bSI;kÞSt;kðIt;k þMt;kÞ

Itþ1;k ¼ ðaSI þ bSI;kÞSt;kðIt;k þMt;kÞ � ðaIM þ bIM;kÞIt;k:

Model 3.—Dynamic local infection, static global infec-

tion:

Stþ1;k ¼ �ðaSI þ bSI;kÞSt;kðIt;k þMt;kÞ � b

Itþ1;k ¼ ðaSIþbSI;kÞSt;kðIt;kþMt;kÞ�ðaIMþbIM;kÞIt;kþb:

Model 4.—Dynamic local infection, dynamic global

infection:

Stþ1;k ¼ �ðaSI þ bSI;kÞSt;kðIt;k þMt;kÞ � gðIt;g þMt;gÞ
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Itþ1;k ¼ ðaSI þ bSI;kÞSt;kðIt;k þMt;kÞ � ðaIM þ bIM;kÞIt;k

þ gðIt;g þMt;gÞ

where indexing is as before across sites k at an annual

time step t, except for Models 3 and 4, which introduce

new parameters, b, which represents a static background

of blister rust spore influx to the ecosystem, and g, a

global rate of infection that is proportional to the

fraction of the landscape in the infective (and therefore

white pine blister rust spore-producing) classes across all

sites (It,g þMt,g). The variable (It,g þMt,g) is obtained

within the model as the sample mean across all sites by

integrating across the posterior uncertainty for all sites

at each year t. In the models that represent dynamic

local infection (Models 2, 3, and 4), we make the

transition between the susceptible and infected classes at

each site k and time step t dependent on the proportion

within the infective classes (slightly infected and

moderately infected) at that site k (It,k þ Mt,k). Note

that with our parameter formulation, the combination

of static local and either static or dynamic global

infection is impossible, because when local infection

does not vary with the proportion of locally infected

trees, the parameter that represents the global mean

transitions, a, and the parameters that represent the

global infection rates, b and g, become redundant and

the model collapses to the simpler model with static local

infection and no global infection. We emphasize that the

a and bk parameters assume slightly different meanings

through the different dynamic formulations, but we

have maintained this notation among all four models for

the sake of clarity. All models were implemented in R,

and the annotated code used to run the models is

included in the Supplement.

Model fitting

The models were implemented with the aggregated

data set through a Markov chain Monte Carlo

(MCMC) scheme with 100 000 iterations per model

that was computed four different times per model to

assure convergence of all parameters. Convergence of

the parameters within the four models was determined

by visually inspecting the parameter values plotted

against the MCMC iterations to ensure both parameter

mixing and parameter convergence to a stable mean

over the 100 000 iterations within the MCMC routine.

The fit of the four dynamic models is compared using

the predictive loss criterion, which evaluates model

performance by minimizing the predictive loss of the

posterior distribution of the parameters (Gelfand and

Ghosh 1998, Clark 2007). We chose the predictive loss

criterion over other metrics of Bayesian model selection

because it emphasizes the performance of prediction into

the future, which matched with our goal of predicting

the future progress of blister rust at different sites

throughout the GYE.

The predictive loss value Dm for each model m is

calculated as the sum of two terms: Gm þ Pm. Gm is the

error sum of squares, which is the cost for selecting the

wrong model:

Gm ¼
Xn

i¼1

ðE½yi j y� � yiÞ2

where y is the matrix of y values. Pm is the penalty term,

which is the predictive variance:

Pm ¼
Xn

i¼1

var½yi jy�:

FIG. 4. (a) Effects of the global transition rates a, the variance r2 on the global transition rates, and the site-specific effects bk
within the model on Pt,k. (b) Conceptual modeled output for the proportion of trees in each category, with all three parameters at
one example site plotted against field data for that site. Inclusion of all three parameters (dotted line) clearly improves the overall
model performance.
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The model with the lowest value of Dm is considered the

best fit (Clark 2007). The units of Dm are absolute values

because both Gm and Pm scale with sample size, and

therefore can only be accurately compared between

models fitted to the same data set.

RESULTS

Each of the four dynamic blister rust infection models

was parameterized with the aggregated data set com-

posed of 121 blister rust infection sites that span 1968–

2008, and the model parameterizations for each site are

included in the Appendix. The predictive loss criterion

was computed for each of the four model outputs, and

the values for the four models are included as Table 2. A

comparison of the predictive loss scores between the

four models clearly demonstrates that the three models

describing dynamic local infection (Models 2, 3, and 4)

outperform the model with static infection (Model 1).

Model 4, which incorporates both dynamic local and

global infection, is the best-fit model according to the

predictive loss criterion. However, we also considered

the predictive loss score of Model 2, the model with

dynamic local infection and no global infection, as close

enough to that of Model 4 to also merit interpretation.

The model outputs for each site can be visually

compared to further evaluate the relative performance

of the four models. The output from six representative

sites, selected to compare the sensitivity of model fitting,

is included as Fig. 5. We chose these six sites to highlight

model performance regarding: (1) the time span of data

included in the model, (2) the amount of initial infection

during the first field census, and (3) the change in the

proportion of infected trees between the first and last

field censuses.

In Fig. 5, site A represents a site with a data set that

spans the largest time frame in our model, 1968–2008,

and site B spans the smallest time frame of data, 2004–

2007. Comparing sites A and B, over the large timescale

at site A, models 2 and 4 clearly outperform models 1

and 3, following the conclusions of the predictive loss

criterion for model performance. However, the four

model outputs in Site B demonstrate that over short

timescales that result in very small changes in the

number of infected trees between field censuses, the four

model outputs are generally indistinguishable. This

comparison highlights the fact that the effects of density

dependence in white pine blister rust infection manifest

over longer timescales that exceed the span of 2004–

2007.

In Fig. 5, sites C and D were selected to highlight

model performance within sites that were either unin-

fected (site C) or had very low amounts of initial

infection (site D). Analyzing the model outputs at these

sites shows that over a moderate time frame of 13–14

years in which the blister rust infection levels were either

low or nonexistent in the first census, Models 2 and 4,

and in some cases also Model 3, accurately captured the

infection dynamics. It is evident from Fig. 5, sites C and

D, that Model 1, which does not consider dynamic local

infection, was unable to accurately represent these sites

with low or nonexistent levels of initial infection. The

results at sites C and D also support the conclusion of

the predictive loss model evaluation, where Models 2

and 4 performed best, followed by Model 3, and Model

1 scored particularly low.

In Fig. 5, sites E and F were selected to compare

model performance at sites that showed a dramatic rise

in the level of infection between the first and last field

censuses. The comparison in model performance be-

tween these sites demonstrates that at sites with

moderate time spans and a dramatic rise in the rate of

blister rust infection during the time period, the four

models generally perform equally well. During a

dramatic rise in infection in a relatively small time

frame (2001–2007 at site E and 1995–2008 in site F), the

site-specific parameter bk may dominate the infection

dynamic compared with other factors, for example

density-dependence. All four models contain the param-

eter bk, which at these sites probably dominates the

modeled site-level infection; this may explain the

relatively equal performance of all models at these sites

with dramatic increases in blister rust infection.

Fig. 6a shows the transition dynamics between the

four infection classes averaged across all sites in the

years between which data are present for the time period

1968–2008, and Fig. 6b shows the transition dynamics

from 1968–2008 averaged across only the 11 sites

sampled at the earliest (first sampling date 1968–1972)

time points in the analysis. Consistent with the

predictive loss scores (Table 2), Models 2 and 4 strongly

outperform Model 1, demonstrating the importance of

considering local density-dependent infection within the

model. Model 3 also generally performs well, but with a

greater tendency to over-predict the proportion of

TABLE 2. Predictive loss model scores, used to assess model fitness in Bayesian statistics, for each
of the four dynamical models.

Model Predictive loss score

1) Static local infection, no global infection 48 800.54
2) Dynamic local infection, no global infection 29 834.29
3) Dynamic local infection, static global infection 33 497.91
4) Dynamic local infection, dynamic global infection 28 463.08

Notes: A lower score indicates a better-fit model, and thus Model 4 is the best fit for the data set,
closely followed by Models 2 and 3. All other models significantly outperformed Model 1, which is
the only model that does not account for density-dependent infection within sites.
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uninfected individuals and to under-predict the propor-

tions of infected individuals compared with Models 2

and 4. In Fig. 6, the jump in the level of infection in the

mid-1990s reflects the portion of our model that is data

rich, because most data sets fall within the period 1995–

2008.

Model predictions

As demonstrated by the sharp change during the past

decade in Fig. 6, models 2, 3, and 4 all indicate a rapidly

accelerating transition rate between the uninfected and

infected classes. Although our model is computed

empirically according to the past activity of white pine

blister rust at specific field sites, this implies that if

ecological conditions remain similar to those during the

time frame for which the model was parameterized,

blister rust infestation will continue to accelerate along

this trajectory into the future. Fig. 7 plots the future

predicted levels of blister rust infestation for the

ecosystem over the next 10 years based on the parameter

estimates for Models 2, 3, and 4 computed during the

1968–2008 time period (Model 1 was excluded from this

FIG. 5. Output of the models for the proportion of trees in each category at six different field plots (sites A–F), chosen to be
representative of variation within the modeled data set. Outputs at these different field sites show the median posterior output for
each of the four dynamic models (black lines), with 95% CIs from the posterior distribution for each model (gray lines). For the
endpoint years, the field data are plotted as the mean proportion in each field class (black cross), with the 95% CI from the posterior
distribution shown as the vertical solid line.
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analysis due to its poor performance as determined by

its high predictive loss score). In the future ecosystem

predictions in Fig. 7, the three models again perform

similarly, and only differ slightly in the rate of transition

between the uninfected and slightly uninfected class.

Model 4 exhibits the fastest acceleration to an average of

90% infection rate at all sites by the year 2013. This

rapid decline compared with the other two models is due

to the density dependence in the rate of global infection

within Model 4, which does not exist in the other two

models. Model 2 predicts an increase to 90% ecosystem

infection in 2026 and Model 3 predicts the same for

2033. Models 2 and 3 exhibit a slower decline to 90%

global infection at all sites due to the dependence on

only local infection in Model 2, and the constant rate of

global infection in Model 3.

In our model formulations, we included a site-specific

random effect, the bk parameter, in order to capture

environmental heterogeneity between sites in the blister

rust infection process. The inclusion of bk significantly

improves model performance (Fig. 4). Within our model

formulation, the bk site effects parameter is modeled as a

random effect for each site, which we hypothesized

might correlate with sources of environmental hetero-

geneity that would help to explain differences in the rate

of blister rust infection at individual sites. Although the

FIG. 5. Continued.
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analysis indicates that model performance is clearly

enhanced by the inclusion of the bk parameter, we were

not able to identify an obvious environmental driver for

this parameter. A preliminary analysis showed that

differences in bk between sites were not related to slope,

aspect, or elevation. Although early studies demonstrat-

ed a link between local microclimate environmental

conditions and blister rust prevalence (van Arsdel et al.

1956), the lack of significant correlation with site

variables as in our study was also exhibited in whitebark

pine trees infected with white pine blister rust in British

Columbia (Campbell and Antos 2000). We also found

no significant spatial autocorrelation in bk. The lack of

spatial or environmental correlation may indicate that

the blister rust spores within the ecosystem are so

ubiquitous that local environmental conditions are

insignificant in controlling the spread of the disease,

and therefore only infective tree density is significant

when considering the infection dynamics.

Table 3 outlines the computed model parameters a,
r2, b, and g (when applicable) for all four models. The

values for the hierarchical variance r2 on the process of

transition between the four infection classes converged

to nearly the same values for Models 2, 3, and 4,

demonstrating that the amount of process error within

the models is well constrained. Ecologically, this

indicates that between the three dynamic infection

scenarios, the amount of error in our understanding of

FIG. 5. Continued.
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the infection transition process in our model is relatively

small and constant among the three models. The values

for the hierarchical variance s2 on the site effects bk
varied among all models, indicating that the relative

contribution of the site effects parameter varied from

model to model. The variance on the site effect, s2, is

highest for Model 4, the best-fit model. Because the site

effects bk are selected from a random normal distribu-

tion, a higher value of variance indicates that the model

parameterization expresses higher site-level environmen-

tal variability bk among sites. Because Model 4 was the

best fit, this indicates that variability among sites is

FIG. 6. (a) Ecosystem-wide level of blister rust infestation for the time period 1968–2008, averaged from the Markov chain
Monte Carlo output aggregated for all sites, plotted as the median of the posterior distribution (black lines) with 95% CIs (gray
lines). The data points (black crosses) represent the median infection from the field surveys within each year, with the posterior 95%
CIs from the model shown as a vertical line. Model 4, which contains terms that describe both site-level and ecosystem-wide
infective tree density dependence, performs the best. However, Models 2 and 3 also perform relatively well compared with Model 1,
which indicates that site-level density dependence may be the most important factor in determining white pine blister rust infection
dynamics. (b) Level of blister rust infestation for 1968–2008 shown only for the 11 sites first sampled in 1968–1972, averaged from
the Markov chain Monte Carlo output for these 11 sites, plotted as the median of the posterior distribution (black lines), with 95%
CI (gray lines). All models except Model 1 perform relatively well at capturing the blister rust infection rates during this relatively
long time period.
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relatively more important than ecosystem-wide process

error variance r2 in determining the overall transition

rates.

DISCUSSION

By comparing the performance of the four model

formulations, we can compare different hypotheses

about the dynamics of blister rust infection in whitebark

pine at the ecosystem scale. The improved performance

of all models that included local density dependence in

infection rate (Models 2, 3, and 4) compared to the

density-independent model (Model 1) indicates that

blister rust infestation in whitebark pine spreads

through mechanisms that are dependent on the amount

of local infestation, despite the fact that blister rust does

not spread directly from tree to tree. The importance of

the local density dependence term indicates that the

most likely pathway for the spread of blister rust spores

is dispersion from whitebark pines to local alternate

hosts and back to local whitebark pines within a single

FIG. 7. Globally averaged projections (aggregated for all sites) for the future level of blister rust in the Greater Yellowstone
Ecosystem plotted as the median of the posterior distribution (solid lines) with 95% CIs (dotted lines). The projections differ in the
rates of increase for each dynamic model formulation. Although our current model is parameterized with data that reflect
conditions during the last 40 years, changes in the environment due to climate change and pathogen or pest interactions might also
influence the rate of white pine blister rust progression.

TABLE 3. Posterior distribution of the median and upper and lower 95% CI for the ecosystem-wide parameters from the four
different dynamic infection models.

Model and
statistic aSI aIM aMD r2

S r2
I r2

M r2
D sSI sIM sMD b g

1) Lower CI 0.0315 0.0718 0.0842 0.0431 0.0419 0.031 0.0374 0.8345 0.3965 0.2175 N/A N/A
Median 0.0288 0.0792 0.1042 0.0627 0.0538 0.0376 0.0438 1.176 0.5252 0.3952 N/A N/A
Upper CI 0.0237 0.0923 0.1123 0.0743 0.0597 0.0418 0.0497 1.487 0.6459 0.5218 N/A N/A

2) Lower CI 0.1187 0.0679 0.0786 0.0172 0.0229 0.0282 0.0249 1.089 0.6687 0.4349 N/A N/A
Median 0.1314 0.0835 0.1043 0.0182 0.0244 0.0301 0.0264 1.312 0.8452 0.6208 N/A N/A
Upper CI 0.1526 0.0983 0.1202 0.0194 0.0263 0.0343 0.0288 1.621 1.023 0.8852 N/A N/A

3) Lower CI 0.0785 0.0721 0.1186 0.0172 0.0219 0.0277 0.0254 1.293 0.4786 0.3734 0.00134 N/A
Median 0.0978 0.0824 0.1051 0.0181 0.0235 0.0301 0.0279 1.576 0.633 0.4928 0.00159 N/A
Upper CI 0.1372 0.0938 0.0841 0.0192 0.0252 0.0338 0.0302 2.058 0.8872 0.6892 0.00177 N/A

4) Lower CI 0.1247 0.0832 0.0897 0.0175 0.0228 0.0287 0.0242 0.9472 0.7302 0.6587 N/A 0.0000199
Median 0.1493 0.0916 0.1068 0.0185 0.0243 0.0317 0.0264 1.169 0.9182 0.8027 N/A 0.0000476
Upper CI 0.1812 0.1043 0.1352 0.0203 0.0279 0.0362 0.0299 1.401 1.1103 1.1 N/A 0.0000609

Notes: Each of the four models was computed as 100 000 Markov chain Monte Carlo simulations and was averaged over four
runs for each model. N/A means not applicable. Terms: a is the mean transition rate between classes, where SI is the transition from
susceptible to slightly infected, IM is the transition from slightly to moderately infected, and MD is the transition from moderately
infected to dead; r2 is the variance for the proportion of trees in each infection class where S is the susceptible class, I is slightly
infected, M is moderately infected, and D is the dead class; s is the variance for the site-specific effects bk on the transition rates; b is
the static background infection rate for Model 3; and g is the density-dependent background infection rate for Model 4.
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growing season. One possible explanation for this local

density dependence is that the alternate hosts for the

spread of white pine blister rust are widely dispersed

through the landscape, so that virtually all whitebark

pine populations are situated close enough to a local

patch of alternate hosts in order to complete the spore

life cycle within a single growing season. However, our

results reached no clear conclusion regarding the

possibility of regional-scale density dependence in white

pine blister rust infection rates, and further studies could

tease apart the limits of the spatial scales at which this

local infection mechanism operates.

The fitted parameter values for the transition rates

between the four stages of white pine blister rust

infection can be transformed into mean residence times

for each infection stage. Using the parameters from

Model 4, the best-fit model, the mean residence times

across all sites, r, indicate that whitebark pine trees in

these sites take, on average, 6.7 years to transition from

uninfected to infected, 10.9 years to transition from

infected to moderately infected, and 9.4 years to

transition from infected to dead. This is the first known

field study of the rate of blister rust progression in high-

altitude whitebark pine, and serves as an informative

temporal parameter for forest managers within the

GYE. Identifying the rate of progression of white pine

blister rust will help to inform management decisions

about transplanting genetically resistant whitebark pine

within the GYE, which is considered a critical manage-

ment solution to help buffer the negative impacts of

white pine blister rust (Sniezko et al. 2004). The

residence times of the slightly infected and moderately

infected stages indicate that, on average in our data set,

trees live for ;20 years with white pine blister rust

infection, a longer infection period than other lower

elevation pine species, such as sugar pine and western

white pine infected by blister rust (Smith and Hoffman

2000). This indicates a temporal window in which

heavily infected sites can be identified, monitored, and

possibly replanted with resistant whitebark pine, while

monitoring the disease progression of infected trees

within the site.

Our current metapopulation model predicts well at

individual sites, but we are currently limited when

extending our model to one where space is treated

explicitly, due to the lack of spatial environmental

drivers found within our analysis of the site effects

parameter bk. Although the bk site effects were

determined to be a statistically significant parameter to

include within the model, they may represent a more

complicated process, such as genetic resistance to

infection within sites. Limiting our model to one that

is spatially implicit presents some challenges to the

interpretation of blister rust dynamics in the GYE,

particularly when considering the spread of blister rust

into areas where no data exist. In this modeling analysis,

we treat space implicitly due to uncertainty in the initial

conditions of blister rust distribution throughout the

landscape, patchy infestation at a small scale, and lack

of spatial autocorrelation in the infection data. The

inclusion of additional data types would help to develop

a spatially explicit model of disease spread. Although

expensive to obtain and restricted to the analysis of

current levels of white pine blister rust, data from

hyperspectral airborne remote-sensing platforms show

promise for categorizing the white pine blister rust

infection through the landscape, and would help to

constrain the spatial progression of the infection (Hatala

et al. 2010). Modeling the progression of white pine

blister rust infection in the future would also be

improved by a data set that tracks the fate of tagged

individual trees, particularly in areas with currently

uninfected whitebark pine. This strategy might also help

to identify genetic populations of whitebark pine that

are resistant to white pine blister rust.

Future work could also improve predictions by

changing the assumptions of the matrix model.

Additional studies on whitebark pine dynamics within

this ecosystem could support the addition of a seedling

recruitment term to more accurately portray the

population dynamics. Additionally, our model currently

predicts some small probability of infection for every

time step from the multinomial distribution used to

model Pt,k. The basic formulation presented within this

analysis could be changed to a mixture model, with

some probability of presence/absence of the disease.

Although this analysis demonstrates that the current

model performs reasonably well for this baseline

temporal analysis of white pine blister rust infection

dynamics, additional future data could improve the

predictions of this model by adding complexity while

decreasing parameter uncertainty.

The predictions of Model 4, the best-fit model, suggest

a 90% average infection rate across all sites by the year

2013, and Models 2 and 3, also fit relatively well to the

data, calculate a 90% infection level by the years 2026

and 2033. This indicates that blister rust will continue to

spread within whitebark pine in 10–20 years to a level at

which nearly all trees at the sites will be impacted.

Because the model developed within this analysis is

parameterized based on current environmental condi-

tions, we emphasize that the transition rates between

infection classes might change due to future conditions

and biotic feedbacks. Feedbacks due to future climate

change could have large impacts on whitebark pine

dynamics, particularly in interactions with other pests

and pathogens such as the mountain pine beetle,

recently shown to preferentially attack whitebark pine

trees already infected with blister rust (Six and Adams

2007). Climate change is projected to increase the scale

of mountain pine beetle outbreaks at high altitudes

(Hicke et al. 2006), which potentially could have

dramatic effects on the overall carbon balance within

high-altitude whitebark pine communities (Kurz et al.

2008). Although the analysis presented within this paper

provides a foundation for understanding the dynamics
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of white pine blister rust through the period 1968–2008,

it also emphasizes a need for the continued study of the

pathosystem dynamics within this sensitive high-altitude

ecosystem into the future. Although it is likely that rapid

biotic and abiotic changes will occur in whitebark pine

communities, it is critical to continually reassess these

dynamics in order to provide estimates of disease

progression as well as to inform decisions about

management solutions that buffer the negative effects

of widespread mortality to whitebark pine trees, such as

transplanting resistant individuals.

CONCLUSION

The formulation of our spatially implicit metapopu-

lation model predicts the future levels of blister rust

infection in whitebark pine at sites throughout the GYE

by parameterizing a data set that spans 1968–2008. By

conducting an analysis that compares four possible

white pine blister rust dynamic infection models, we

conclude that white pine blister rust operates through

mechanisms that are strongly density dependent at the

local level within individual sites, and more weakly

density dependent on the background level of infection

within the ecosystem as a whole. Results from our model

are used to calculate the residence times for each of the

infective stages of white pine blister rust, as well as the

time to 90% infection throughout the ecosystem.

Although we were not able to correlate environmental

drivers with variation in blister rust infection at the site

level, our analysis indicates that blister rust has

pervaded most of the GYE, regardless of possible

environmental barriers present within the 121 sites in

our aggregated data set. The lack of correlation between

heterogeneity in blister rust infection rates and environ-

mental heterogeneity might indicate that the disease has

pervaded all possible whitebark pine habitats in the

GYE.

The modeling approach presented within this analysis

could be applied to analyze infection dynamics in other

systems where infected populations are relatively sta-

tionary (e.g., plants, amphibians) relative to the

infection agent. Our approach is unique in that it

accounts for infection dynamics at both the site and

ecosystem levels that are driving the process of infection.

Forest managers can utilize results from this study to

both track the rate of infection within sites and analyze

the average rates of white pine blister rust progression

throughout the ecosystem. Results from this modeling

analysis might be used to identify sites with slow rates of

disease progression, which might indicate genetic

resistance within certain populations. Additionally,

these results might help to inform reforestation efforts

by identifying the rates at which white pine blister rust

infection is progressing. This study outlines a modeling

approach that provides valuable information regarding

site-level and ecosystem-wide infection dynamics that

analyzed the past progression of blister rust and begins

to identify its course into the future. The rapid

progression of white pine blister rust spread in

whitebark pine of the GYE should spark interest in

ecological studies that begin to examine changes to the

community-level dynamics that will likely ensue with the

decline of whitebark pine.

Furthermore, the analysis and results presented within

this study serve as an example of the benefits of data-

sharing agreements between different scientific groups.

It is easy to imagine that the conclusions from this

modeling analysis might not have been as robust had

each of the data sets been modeled individually.

Through collaboration, it was possible to increase both

the temporal and spatial scope of our study to utilize the

full breadth of information that was available regarding

white pine blister rust in the GYE. As ecologists are

increasingly faced with problems that bridge small scales

with regional and global changes into the future, we

emphasize that collaboration and data sharing can be an

invaluable tool for ecological monitoring and modeling.
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APPENDIX

White pine blister rust model output for all 121 sites (Ecological Archives A021-050-A1).

SUPPLEMENT

Source code and model output for white pine blister rust Bayesian infection model (Ecological Archives A021-050-S1).
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